首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
移动网络优化问题是一个NP难问题,所以它并不能保证在合理的运行次数里就找到最优的方案。常用的人工智能求解优化问题有遗传算法、蚁群算法和禁忌算法。相对于这几种算法在离散对象的组合优化问题中优势比较明显,而禁忌算法更容易跳出局部极值从而能在更大的范围内寻找到一个较优解。我们开发的基于禁忌算法的长沙移动网络优化软件,通过科学分析采集的数据,从而解决话务阻塞和掉话问题,优化了网络,提高了长沙移动的网络质量。  相似文献   

2.
This paper investigates the optimal tracking control problem (OTCP) for nonlinear stochastic systems with input constraints under the dynamic event-triggered mechanism (DETM). Firstly, the OTCP is converted into the stabilizing optimization control problem by constructing a novel stochastic augmented system. The discounted performance index with nonquadratic utility function is formulated such that the input constraint can be encoded into the optimization problem. Then the adaptive dynamic programming (ADP) method of the critic-only architecture is employed to approximate the solutions of the OTCP. Unlike the conventional ADP methods based on time-driven mechanism or static event-triggered mechanism (SETM), the proposed adaptive control scheme integrates the DETM to further lighten the computing and communication loads. Furthermore, the uniform ultimately boundedness (UUB) of the critic weights and the tracking error are analysed with the Lyapunov theory. Finally, the simulation results are provided to validate the effectiveness of the proposed approach.  相似文献   

3.
We propose a new approach to apply the chaining technique in conjunction with information-theoretic measures to bound the generalization error of machine learning algorithms. Different from the deterministic chaining approach based on hierarchical partitions of a metric space, previously proposed by Asadi et al., we propose a stochastic chaining approach, which replaces the hierarchical partitions with an abstracted Markovian model borrowed from successive refinement source coding. This approach has three benefits over deterministic chaining: (1) the metric space is not necessarily bounded, (2) facilitation of subsequent analysis to yield more explicit bound, and (3) further opportunity to optimize the bound by removing the geometric rigidity of the partitions. The proposed approach includes the traditional chaining as a special case, and can therefore also utilize any deterministic chaining construction. We illustrate these benefits using the problem of estimating Gaussian mean and that of phase retrieval. For the former, we derive a bound that provides an order-wise improvement over previous results, and for the latter we provide a stochastic chain that allows optimization over the chaining parameter.  相似文献   

4.
This paper is concerned with a leader-follower consensus problem for networked Lipschitz nonlinear multi-agent systems. An event-triggered consensus controller is developed with the consideration of discontinuous state feedback. To further enhance the robustness of the proposed controller, modeling uncertainty and switching topology are also considered in the stability analysis. Meanwhile, a time-delay equivalent approach is adopted to deal with the discrete-time control problem. Particularly, a sufficient condition for the stochastic stabilization of the networked multi-agent systems is proposed based on the Lyapunov functional method. Furthermore, an optimization algorithm is developed to derive the parameters of the controller. Finally, numerical simulation is conducted to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

5.
The primary objective for modeling of machining processes is to develop a predictive capability of machining performance in order to facilitate effective planning of machining operations. This capability leads to faster implementation, higher performance, quality at a lower cost. This comes about due to improved selection of machining parameters, optimal fixture design and the avoidance of tool failure. The simulation system presented simultaneously considers the effect of cutter geometry, the cutter's initial position errors, workpiece geometry, machine tool dynamics, and workpiece/fixture system dynamics on the machining process.The integration of all of the above in one model provides an off-line tool to simulate and optimize the machining parameters and the fixture configuration cutting both lead and production time. The modular nature of the simulation system presented allows for the study of many different machining processes. The cutting forces in this system are modeled using a mechanistic approach. NURBS curves and surfaces are utilized for the geometric modeling and simulation of the machining process. While a finite element method is used to model and analyze the workpiece/fixture dynamics. Two case studies are presented to demonstrate the practical application of the presented simulation. The first case presents the optimization of the fixture configuration of a generic automotive component. While the second case presents the results of simulations performed on a novel mill/grind machining process. This process is a combination of face milling and grinding in one operation. Some simulated results are presented along with experimental validation.  相似文献   

6.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

7.
The beamforming-based spatial precoding (BBSP) method has been proposed to reduce the overheads of the downlink training and the channel state information feedback in the frequency-division duplex (FDD) massive multiple-input-multiple-output (MIMO) wireless communication systems. However, the original BBSP method suffers from the interference problem at user equipments (UEs) because of using a set of pre-defined fixed beamforming coefficients. Moreover, the BBSP method can not deal with the performance degradation due to mutual coupling (MC) effect because of massive antennas deployed at transmitter and receiver. This paper presents a precoding method that incorporates a beamforming-selection spatial precoding (BSSP) scheme with a population-based stochastic optimization algorithm such that the designed beamforming coefficients can greatly reduce the severe interference between UEs and alleviate the MC effect on the performance of massive MIMO systems. The proposed method can not only achieve better bit error rate (BER) performance than the conventional BBSP method, but also preserves the advantages of the BBSP method having lower overheads of the downlink training and the CSI feedback. In particular, we propose an appropriate fitness function based on an averaged BER formula for the population-based stochastic optimization algorithm to find the optimal beamforming coefficients. Numerical simulations are also presented for both the urban-macro and the urban-micro wireless MIMO scenarios to validate the superior BER performance of the proposed precoding method as compared to the existing BBSP method.  相似文献   

8.
A new stochastic fading channel model called cascaded Weibull fading is introduced and the associated capacity is derived in closed form. This model is generated by the product of independent, but not necessarily identically distributed, Weibull random variables (RVs). By quantifying the convergence rate of the central limit theorem as pertaining to the multiplication of Weibull distributed RVs, the statistical basis of the lognormal distribution is investigated. By performing Kolmogorov-Smirnov tests, the null hypothesis for this product to be approximated by the lognormal distribution is studied. Another null hypothesis is also examined for this product to be approximated by a Weibull distribution with properly adjusted statistical parameters.  相似文献   

9.
基于交叉熵方法提出了一种启发式划分测试用例选择策略。该策略在待测软件参数已知的条件下,以总的测试费用最小为目的,利用交叉熵方法通过调整各个子域中测试用例选择的概率来选择测试用例。  相似文献   

10.
Linear direct feed drives are widely used in machine tools, but an abrupt counter force from the secondary part will induce the jerk to the metro frame contacted with the linear motor and cause the vibration of auxiliary devices on it. The jerk-decoupling cartridge (JDC) provides a buffer to reduce such an impact. Design target for such a system includes both the tracking error and the jerk induced to the metro frame. To achieve both targets systematically, this work presents an integrated approach to efficiently determine parameters in the JDC and the position controller of the feed drive. The problem is firstly formulated as a nonlinear constrained optimization problem, which is then converted to a series of projection gradient optimization problems and step searching problems, which are either convex or linear. Thus, fast convergence of parameters are achieved within first several iterations. Through a series of simulation, the effectiveness of proposed methodology is verified.  相似文献   

11.
The optimal control strategy constructed in the form of a state feedback is effective for small state perturbations caused by changes in modeling uncertainty. In this paper, we investigate a robust suboptimal feedback control (RSPFC) problem governed by a nonlinear time-delayed switched system with uncertain time delay arising in a 1,3-propanediol (1,3-PD) microbial fed-batch process. The feedback control strategy is designed based on the radial basis function to balance the two (possibly competing) objectives: (i) the system performance (concentration of 1,3-PD at the terminal time of the fermentation) is to be optimal; and (ii) the system sensitivity (the system performance with respect to the uncertainty of the time-delay) is to be minimized. The RSPFC problem is subject to the continuous state inequality constraints. An exact penalty method and a novel time scaling transformation approach are used to transform the RSPFC problem into the one subject only to box constraints. The resulting problem is solved by a hybrid optimization algorithm based on a filled function method and a gradient-based algorithm. Numerical results are given to verify the effectiveness of the developed hybrid optimization algorithm.  相似文献   

12.
In this paper, an optimization problem is formulated for stable binary classification. Essentially, the objective function seeks to optimize a full data transformation matrix along with the learning of a linear parametric model. The data transformation matrix and the weight parameter vector are alternatingly optimized based on the area above the receiver operating characteristic curve criterion. The proposed method improves the existing means via an optimal data transformation rather than that based on the diagonal, random and ad-hoc settings. This optimal transformation stretches beyond the fixed settings of known optimization methods. Extensive experiments using 34 binary classification data sets show that the proposed method can be more stable than competing classifiers. Specifically, the proposed method shows robustness to imbalanced and small training data sizes in terms of classification accuracy with statistical evidence.  相似文献   

13.
Digital twins, along with the internet of things (IoT), data mining, and machine learning technologies, offer great potential in the transformation of today’s manufacturing paradigm toward intelligent manufacturing. Production control in petrochemical industry involves complex circumstances and a high demand for timeliness; therefore, agile and smart controls are important components of intelligent manufacturing in the petrochemical industry. This paper proposes a framework and approaches for constructing a digital twin based on the petrochemical industrial IoT, machine learning and a practice loop for information exchange between the physical factory and a virtual digital twin model to realize production control optimization. Unlike traditional production control approaches, this novel approach integrates machine learning and real-time industrial big data to train and optimize digital twin models. It can support petrochemical and other process manufacturing industries to dynamically adapt to the changing environment, respond in a timely manner to changes in the market due to production optimization, and improve economic benefits. Accounting for environmental characteristics, this paper provides concrete solutions for machine learning difficulties in the petrochemical industry, e.g., high data dimensions, time lags and alignment between time series data, and high demand for immediacy. The approaches were evaluated by applying them in the production unit of a petrochemical factory, and a model was trained via industrial IoT data and used to realize intelligent production control based on real-time data. A case study shows the effectiveness of this approach in the petrochemical industry.  相似文献   

14.
由于受限于编译时所见的信息和缺乏精确的输入数据集和目标机信息,编译器为了保持程序正确性和避免性能降级必须做出保守的假设,往往得不到最佳性能。为了克服静态优化的不足,在研究java虚拟机中运行时优化技术的基础上,结合LLVM编译器架构,阐述了面向C/C++程序的运行时优化技术。  相似文献   

15.
During coronavirus (SARS-CoV2) the number of fraudulent transactions is expanding at a rate of alarming (7,352,421 online transaction records). Additionally, the Master Card (MC) usage is increasing. To avoid massive losses, companies of finance must constantly improve their management information systems for discovering fraud in MC. In this paper, an approach of advancement management information system for discovering of MC fraud was developed using sequential modeling of data depend on intelligent forecasting methods such as deep Learning and intelligent supervised machine learning (ISML). The Long Short-Term Memory Network (LSTM), Logistic Regression (LR), and Random Forest (RF) were used. The dataset is separated into two parts: the training and testing data, with a ratio of 8:2. Also, the advancement of management information system has been evaluated using 10-fold cross validation depend on recall, f1-score, precision, Mean Absolute Error (MAE), Receiver Operating Curve (ROC), and Root Mean Square Error (RMSE). Finally various techniques of resampling used to forecast if a transaction of MC is genuine/fraudulent. Performance for without re-sampling, with under-sampling, and with over-sampling is measured for each Algorithm. Highest performance of without re-sampling was 0.829 for RF algorithm-F score. While for under-sampling, it was 0.871 for LSTM algorithm-RMSE. Further, for over-sampling, it was 0.921 for both RF algorithm-Precision and LSTM algorithm-F score. The results from running advancement of management information system revealed that using resampling technique with deep learning LSTM generated the best results than intelligent supervised machine learning.  相似文献   

16.
This paper studies the problem of continuous gain-scheduled PI tracking control on a class of stochastic nonlinear systems subject to partially known jump probabilities and time-varying delays. First, gradient linearization procedure is used to construct model-based linear stochastic systems in the vicinity of selected operating states. Next, based on stochastic Lyapunov stabilization analysis, sufficient conditions for the existence of a PI tracking control are established for each linear model in terms of linear matrix inequalities. Finally, continuous gain-scheduled approach is employed to design continuous nonlinear PI tracking controllers on the entire nonlinear jump system. Simulation example is given to illustrate the effectiveness of the developed design techniques.  相似文献   

17.
陈强 《科技广场》2006,(7):15-16
排课问题是一个计算时间呈指数增长的算法,即是一个NP完全问题。本文通过了解排课算法的研究现状,对解决NP问题的几种算法进行比较,并对目前使用的排课算法进行了介绍。  相似文献   

18.
This paper deals with the problem of non-fragile guaranteed cost control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are assumed to be time-varying and norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square for all admissible parameter uncertainties and the closed-loop cost function value is not more than a specified upper bound. A new sufficient condition for the existence of such controllers is presented based on the linear matrix inequality (LMI) approach. Then, a convex optimization problem is formulated to select the optimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

19.
Task assignment, the core problem of Spatial Crowdsourcing (SC), is often modeled as an optimization problem with multiple constraints, and the quality and efficiency of its solution determines how well the SC system works. Fairness is a critical aspect of task assignment that affects worker participation and satisfaction. Although the existing studies on SC have noticed the fairness problem, they mainly focus on fairness at the individual level rather than at the group level. However, differences among groups in certain attributes (e.g. race, gender, age) can easily lead to discrimination in task assignment, which triggers ethical issues and even deteriorates the quality of the SC system. Therefore, we study the problem of task assignment with group fairness for SC. According to the principle of fair budget allocation, we define a well-designed constraint that can be considered in the task assignment problem of SC systems, resulting in assignment with group fairness. We mainly consider the task assignment problem in a common One-to-One SC system (O2-SC), and our goal is to maximize the quality of the task assignment while satisfying group fairness and other constraints such as budget and spatial constraints. Specifically, we first give the formal definition of task assignment with group fairness constraint for O2-SC. Then, we prove that it is essentially an NP-hard combinatorial optimization problem. Next, we provide a novel fast algorithm with theoretical guarantees to solve it. Finally, we conduct extensive experiments using both synthetic and real datasets. The experimental results show that the proposed constraint can significantly improve the group fairness level of algorithms, even for a completely random algorithm. The results also show that our algorithm can efficiently and effectively complete the task assignment of SC systems while ensuring group fairness.  相似文献   

20.
This paper considers a class of optimal control problems governed by Markov jump systems. Our focus is to develop a computational method, based on the control parametrization approach, for solving this class of optimal control problems. Due to the existence of the continuous-time Markov chain, the optimal control problem under consideration is a stochastic optimal control problem, and hence the control parametrization technique cannot be applied directly. For this, a derandomization approach is introduced to obtain a representative deterministic optimal control problem. Then, the control parametrization method is applied to obtain an approximate finite dimensional optimization problem which can be computed numerically using the gradient-based optimization method. For this, the gradient formulas of the cost function and the constraint functions with respect to control variables are derived. Finally, a practical application involving a RLC circuit model is solved using the method proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号