首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper is based on findings from a three year collaborative action research project on classroom teaching and learning. The research, which involved 33 teachers, over two thousand students from six schools, and the authors, centred on exploring how various features of the classroom context influence teaching and learning processes. We interpret project findings as indicating the importance of balance between cognition and affect for effective teaching and learning. We advance the notion of challenge as a way of conceptualising this balance. Challenge comprises a cognitive/metacognitivedemand component and an affectiveinterest component. Nine major features of a teaching/learning event were found to interact to influence these cognitive and affective components of challenge. Specializations: Collaborative research on science teaching and learning; staff development and school improvement; quality of science education. Specializations: Learning and teaching science; pre-service teacher education. Specializations: teacher development in science education; technology education. Specializations: Science and teachnology curriculum, environmental education, educational disadvantage. Specializations: learning theory, probing of understanding, conceptual change.  相似文献   

2.
Despite the almost mandatory inclusion of a laboratory component in the school curriculum very little has been reported about the effects of laboratory instruction upon student learning and attitudes. The present study was undertaken to investigate the thinking of students in a chemistry laboratory. An interpretive research method was adopted in collecting and analysing data gathered from observations, general interviews and stimulated recall interviews. Four high school students were studied during their participation in a week-long university summer school program. This study reports how the four students responded differently to the same laboratory experience. Specializations: chemistry and biochemistry education, thinking in science and industry. Specializations: science education, teacher learning and preparation, teaching thinking.  相似文献   

3.
The aim of the Primary and Early Childhood Science and Technology Education Project (PECSTEP) is to improve teaching and learning in science and technology of by increasing the number of early childhood and primary teachers who are effective educators. PECSTEP is based on an interactive model of teaching and systematically links work on gender with the learning and teaching of science and technology. The project involves: a year-long inservice program which includes the development of a science curriculum unit by teachers in their schools; linking of the preservice and inservice programs; and the development of support networks for teachers. Each phase of PECSTEP has been researched by means of surveys, interviews and the use of diaries. Research questions have focussed particularly on changes in: teachers’ and student teachers’ attitudes to teaching science and technology; their perceptions of science and technology; their perceptions of their students’ responses and their understandings of how gender relates to these areas. Specializations: primary science curriculum, science teacher education, sociology of science, technology and education. Specializations: gender and science/science teacher education, feminist theory, curriculum theory. Specializations: Science education research, curriculum development.  相似文献   

4.
In 1990, a large proportion of third year primary trainee teachers at Victoria College had observed or taught very few or no science lessons during the first two years of their course. The students felt that a lack of content knowledge, a crowded school curriculum, and problems associated with managing resources and equipment, were the main factors contributing to the low level of science being taught in schools. By the end of their third year significantly more students had taught science than after the second year. There was also a change in approach to teaching science with more practical activities being included than previously. The science method unit taught to the students in the third year of their course contributed to this increase. The students considered the hands-on activities in class to have been the most effective aspect of the unit in their preparation for the teaching of primary science. Specializations: children's learning in science, primary teacher education. Specializations: student understanding of biology, evaluation of formal and informal educational settings. Specializations: gender, science and technology, environmental education. Specializations: children's learning in science, language and science.  相似文献   

5.
This paper presents some of the findings of a naturalistic study of a first year university biology laboratory. We report on the affective outcomes for a field trip and a practical exercise that incorporated innovations aimed at increasing the scientific realism and students' responsibility in the learning process. Concern with assessment procedures and a perceived lack of teaching support dominated outcomes for students. Feelings of confusion, lack of satisfaction and hostility were evoked. Recognition of the need to foster greater student input into the learning process is commended, but this paper raises issues about the strategies utilised. Specializations: conceputual understanding in biology students, laboratory work. Specializations: curriculum and assessment in science, teacher Education, metacognition.  相似文献   

6.
The importance of recent and relevant experience is being asserted for teacher educators though not others responsible for education policy and curriculum. The paper will review the “self evident” value of recent and relevant experience from the perspective of researcher/teacher educator returning to classroom teaching. The potential and implications for research on teaching and learning and the opportunities for more significant school experience in teacher education are outlined. Specializations: teacher education, science education, health education, curriculum evaluation and research.  相似文献   

7.
The potential of informal sources of science learning to supplement and interact with formal classroom science is receiving increasing recognition and attention in the research literature. In this study, a phenomenographic approach was used to determine changes in levels of understanding of 27 grade 7 primary school children as a result of a visit to an interactive science centre. The results showed that most students did change their levels of understanding of aspects of the concept “sound”. The study also provides information which will be of assistance to teachers on the levels of understanding displayed by students on this concept. Specializations: informal science learning, science curriculum Specializations: science education, science teacher education, conceptual change, learning environments.  相似文献   

8.
Conclusion This study suggests that most students entering science or science education units in preservice primary teacher education courses have a positive attitude to the teaching/learning of primary science and see value in all domains of science for children at this stage. This was an unexpected finding. It was of concern however, that their interest in physical science topics was so low. This may be due to previous specific experiences in secondary science. Science and science education units should build on the positive attitudes of students and could develop physical science ideas through their significance in environmental and social problems. Specializations: science education, teacher education in science. Specializations: science education policy and practice, teacher education, school effectiveness.  相似文献   

9.
This paper describes a study involving second and third year primary Diploma of Teaching students. It considers their discipline competence, their confidence in teaching particular topic areas and their views of the nature of science teaching in the classes in which they were placed during teaching rounds. It then describes attempts made within the science curriculum course to overcome particular problems. Specializations: Science teacher education, the practicum.  相似文献   

10.
Existing instruments in classroom environment research have limitations when subgroups are investigated or case studies of individual students conducted. This study reports the validation and development of a personal form of the Science Laboratory Environment Inventory which is better suited to such studies. Further, systematic differences between scores on the class and personal forms of the instrument are reported along with comparisons of their associations with inquiry skill and attitudinal outcomes. Specializations: Science education, Preservice science teacher education. Specializations: Learning environments, science education, educational evaluation, curriculum. Specializations: Curriculum, science education, science laboratory teaching.  相似文献   

11.
This paper describes an ongoing process of participatory curriculum development. It outlines some of the tensions which need to be explored in science curriculum development: debates about the nature of science, of society, of school science content and of learning theories. The process whereby action can arise from this debate is also explored. An example will be outlined of a network of science curriculum action which has developed from the work of a range of science education projects in Natal, South Africa. Specializations: science curriculum development from primary to tertiary level. Specializations: inservice primary science teacher development. Specializations: inservice teacher development, biology education. Specializations: environmental education, teacher development. Specializations: environmental education, teacher development.  相似文献   

12.
The premise that underlies the pre-service science teacher education program at Monash University is the need to focus on the nature of learning in ways that encourage student-teachers to reconsider their conceptions of learning and how this relates to their view of teaching. The purpose of teaching portfolios is to act as a prompt for student-teachers to reconsider these conceptions and as a way of helping them to better articulate their professional knowledge. The Science (Stream 3) student teachers construct a portfolio of teaching strategies, episodes, ideas, etc. that demonstrate how they see their role as science teachers. The portfolio is ungraded, openended and organised as a dynamic assessment task, not just a static end product. This paper reports on student-teachers' understanding of, and approach to portfolios as they come to understand its purpose and value. Specializations: chemistry and science education, technology and industry links with science curriculum Specializations: science education, reflection, curriculum and evaluation  相似文献   

13.
A study of primary teacher trainees' perceptions and attitudes to science in 1990, has been useful in designing a semester unit aimed at increasing the confidence and interest of first year students at Victoria College. This paper outlines the background survey and discusses some, of the results and how they were used to develop the Professional Readiness Study-Understanding Science. This unit attempts to change attitudes by focussing on metacognition and encourages students to understand and control their own learning. Discussion involves teaching and learning strategies and alternative assessment approaches including the student's journal-the Personal Record. Specializations: technology for learning, health education. Specializations student understanding of biology, particularly genetics, evaluation. Specializations: children's learning in science, language in science.  相似文献   

14.
A learning model for science education was proposed by Appleton (1989), based on Osborne and Wittrock’s generative learning theory (1983) and the Piagetian notions of disequilibrium, assimilation, and accommodation. The model incorporated many aspects of difficulties in learning science experienced by students, as revealed in the LISP projects and similar research. This paper examines how the model may be used to derive teaching strategies: components of the model are analysed in terms of specific types of teacher interventions which could facilitate students’ progress to accommodation. Some established teaching strategies are analysed in terms of these interventions. Specializations: primary teacher education, teaching strategies in science.  相似文献   

15.
Teachers in one-teacher schools have often experienced problems when implementing enquiry-based science programs. An innovation was developed to address these problems in isolated one-teacher schools in the far-west of NSW. It consisted of 18 science kits and an associated teaching sequence. Each kit contained 15 student activity sheets, equipment and supplementary resources. An intervention program was designed to support the implementation of the innovation. The purpose of this study was to monitor the teacher's process of change and to ascertain the outcomes of the intervention program in one of the schools. Data were collected using, diagnostic dimensions from the Concerns-Based Adoption Model Project as well as qualitative methods. The results indicated that the teacher's concerns about the innovation focused on how it affected the students. The teacher used the innovation to support her student-centred teaching methods and the students had positive perceptions about learning science. Specializations: K-6 Science and Technology curriculum and instruction.  相似文献   

16.
This paper reports an empirical study of science education in Australian primary schools. The data show that, while funding is seen as a major determinant of what is taught and how it is taught, teacher-confidence and teacher-knowledge are also important variables. Teachers are most confident with topics drawn from the biological sciences, particularly things to do with plants. With this exception there is no shared body of science education knowledge that could be used to develop a curriculum for science education. There was evidence that most teachers see a need for a hands-on approach to primary science education involving the use of concrete materials. A substantial proportion of teachers agree that some of the problems would be alleviated by having a set course together with simple, prepared kits containing sample learning experiences. Any such materials must make provision for individual teachers to capitalise on critical teaching incidents as they arise and must not undermine the professional pride that teachers have in their work. Specializations: science education, school effectiveness, teacher education Specializations: science education, teacher education in science  相似文献   

17.
One set of measures of the quality of courses for the preparation of science teachers stems from the perceptions exit students have of their knowledge with respect to that teaching. The Discipline Review of Teacher Education in Mathematics and Science surveyed these students late in 1988 on three broad types of knowledge-science content knowledge, curriculum knowledge, and pedagogical knowledge. Some of these findings of the Review are described. In addition, the base for developing items to measure these three types of knowledge is discussed in this paper. The variety in the data that emerged is also presented and the consistency of the findings with other measures of quality is described. Specialisations: science and technology curriculum, environmental education, educational disadvantage. Specialisations: research and evaluation in teacher education, technical and further education and total quality management. Specialisations: research in educational systems.  相似文献   

18.
Research undertaken by educational researchers based in universities has not had the desired impact on the practices of classroom science teachers. Yet Goodlad (1990) has argued that if teaching is to be recognised as a profession there is a great need for the marrying of the knowledge of the practitioner with that of the researcher. Student teachers might learn to respect the potential for such a union by undertaking minor classroom research projects during their teacher preparation programs. This paper discusses the role of research projects in pre-service teacher preparation with reference to an inquiry conducted with teacher education students. Specializations: science education, teacher learning and preparation, teaching thinking.  相似文献   

19.
This paper discusses a preliminary investigation into primary pre-service teachers' pedagogical reasoning skills. Results from this investigation led to the development of a problem-based learning model which focused on improving primary pre-service teachers' pedagogical reasoning skills. The problem-based learning model uses pedagogical reasoning as the basis for creating problem situations for the pre-service teachers to investigate. The paper reports on pre-service teachers' views on the use of the approach to improve their pedagogical reasoning skills. Specializations: science teacher education, learning in science, chemistry education. Specializations: student learning, conceptual change, technology education, curriculum evaluation.  相似文献   

20.
This study investigated how professional development featuring evidence‐based customization of technology‐enhanced curriculum projects can improve inquiry science teaching and student knowledge integration in earth science. Participants included three middle school sixth‐grade teachers and their classes of students (N = 787) for three consecutive years. Teachers used evidence from their student work to revise the curriculum projects and rethink their teaching strategies. Data were collected through teacher interviews, written reflections, classroom observations, curriculum artifacts, and student assessments. Results suggest that the detailed information about the learning activities of students provided by the assessments embedded in the online curriculum motivated curricular and pedagogical customizations that resulted in both teacher and student learning. Customizations initiated by teachers included revisions of embedded questions, additions of hands‐on investigations, and modifications of teaching strategies. Student performance improved across the three cohorts of students with each year of instructional customization. Coupling evidence from student work with revisions of curriculum and instruction has promise for strengthening professional development and improving science learning. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1037–1063, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号