首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper simultaneously addresses the parameter/state uncertainties, external disturbances, input saturations, and actuator faults in the handling and stability control for four-wheel independently actuated (FWIA) electric ground vehicles (EGVs). Considering the high cost of the available sensors for vehicle lateral velocity measurement, a robust H dynamic output-feedback controller is designed to control the vehicle motion without using the lateral velocity information. The investigated parameter/state uncertainties include the tire cornering stiffness, vehicle mass, and vehicle longitudinal velocity. The unmodeled terms in the vehicle lateral dynamics model are dealt as the external disturbances. Faults of the active steering system and in-wheel motors can cause dangerous consequences for driving, and are considered in the control design. Input saturation issues for the tire forces can deteriorate the control effects, and are handled by the proposed strategy. Integrated control with active front steering (AFS) and direct yaw moment (DYC) is adopted to control the vehicle yaw rate and sideslip angle simultaneously. Simulation results based on a high-fidelity and full-car model via CarSim-Simulink show the effectiveness of the proposed control approach.  相似文献   

2.
In this paper, the problem of output feedback robust H control for spacecraft rendezvous system with parameter uncertainties, disturbances and input saturation is investigated. Firstly, a full-order state observer is designed to reconstruct the full state information, whose gain matrix can be obtained by solving the linear matrix inequality (LMI). Subsequently, by combining the parametric Riccati equation approach and gain scheduled technique, an observer-based robust output feedback gain scheduled control scheme is proposed, which can make full use of the limited control capacity and improve the control performance by scheduling the control gain parameter increasingly. Rigorous stability analyses are shown that the designed discrete gain scheduled controller has faster convergence performance and better robustness than static gain controller. Finally, the performance and advantage of the proposed gain scheduled control scheme are demonstrated by numerical simulation.  相似文献   

3.
This paper is concerned with the event-triggered dynamic output feedback tracking control for large-scale interconnected systems with disturbances. For each node, a novel event-triggered mechanism is driven by local relative output tracking error to determine whether the signal will be transmitted. A two-step optimization is applied for dynamic output feedback controller design which guarantees robust stability of the system with an optimal H disturbance attenuation level. Finally, a simulation example of master-slave multiple vehicles is given to illustrate the effectiveness of the proposed scheme.  相似文献   

4.
This paper is devoted to solve the combined problem of input–output decoupling and robust control of the four-wheel steering vehicles. A more practical three-degree-of-freedom systems covering longitudinal, lateral and yaw motions are used to improve the safety and steerability while uncertainties and external disturbances are considered. A novel decoupling conception Attenuating Diagonal Decoupling and a new index Coupling Attenuation Index are introduced and the system is divided up into two systems with a special structure. The first system is caused by uncertainties and disturbances and the second system is a certain system coupling with the first one. A control scheme composed of a coupling attention controller and a decoupling controller are explored. The influences of the uncertainties and disturbances on the output are attenuated under the coupling index by the coupling attention controller designed for the first system while the input–output decoupling is achieved by employing the decoupling controller designed for the second system. Furthermore, we prove in theory that the input–output decoupling and robust control are both established for the closed-loop system of the control scheme and the primordial vehicle system. Besides these works, a switching law is introduced such that the above excellent performances are realizable in four-wheel steering vehicles with conventional steering interfaces. Simulations show that even with a large velocity varying range, the decoupling and robust performances are guaranteed simultaneously, i.e. the handling stability and steerability are improved.  相似文献   

5.
This paper is concerned with the problem of robust fault-tolerant H dynamic output feedback control for fractional-order linear uncertain systems with the order satisfying 0 < α < 1 in the presence of actuator faults. A new linear matrix inequality (LMI) formulation corresponding to the H norm of fractional-order linear systems is proposed. Based on the new formulation and by introducing a new linearizing change of variables, sufficient conditions for robust fault-tolerant H dynamic output feedback controller designs are derived in term of LMIs. Furthermore, the proposed controller not only enables the system to keep robust stabilization, but also achieves a better H performance compared with the existing methods. Numerical examples are given to illustrate the design procedure and its effectiveness.  相似文献   

6.
Stability and energy consumption have always been important issues in electric vehicle research. Excessive slip energy not only aggravates tire wear, but also consumes energy of electric vehicle. In order to ensure the lateral stability and to reduce the slip energy dissipation of the distributed drive electric vehicle (DDEV) equipped with Mechanical Elastic Wheel (MEW), an integrated framework considering both tire slip energy dissipation and lateral stability control is proposed. The SESC (Slip Energy and Stability Control) is a hierarchical control framework for DDEV with MEW. A PID speed tracking controller and an (Integral Terminal Slide Mode) ITSM controller are designed at the upper-level controller. The ITSM controller can improve the lateral stability of the vehicle by obtaining the desired yaw moment. Speed tracking controller can stabilize the speed of the vehicle and obtain the desired longitudinal force. At the lower-level controller, the brush model of the MEW is proposed to express tire slip energy. In order to reduce the error of the vehicle dynamics and the slip energy dissipation, a mixed objective function including a holistic corner controller (HCC) and a minimum tire slip energy characterization is proposed. The proposed control framework is verified by Carsim and Matlab/Simulink under emergency simulation conditions. The simulation results show that the SESC based method can improve the lateral stability of DDEV with MEW effectively, and has better performance compared with fuzzyPID+AD based method. Meanwhile, the SESC achieves less slip energy than conventional torque distribution method.  相似文献   

7.
In this work, considering the roll dynamics and actuator dynamics, an observer-based control scheme for a vehicle is proposed. The proposal considers a nonlinear higher order sliding mode observer to estimate unmeasurable lateral velocity, roll angle and roll velocity. Using the observer information, a controller based on block control with sliding mode technique is designed for the reference trajectory tracking of the lateral and yaw velocities of the vehicle. The stability of the complete closed-loop system including zero dynamics is analyzed. The effectiveness of the proposed scheme is demonstrated through CarSim simulations.  相似文献   

8.
In this paper two robust controllers for a multivariable vertical short take-off and landing (VSTOL) aircraft system are designed and compared. The aim of these controllers is to achieve robust stability margins and good performance in step response of the system. LQG/LTR method is a systematic design approach based on shaping and recovering open-loop singular values while mixed-sensitivity H method is established by defining appropriate weighting functions to achieve good performance and robustness. Comparison of the two controllers show that LQG method requires rate feedback to increase damping of closed-loop system, while H controller by only proper choose the weighting functions, meets the same performance for step response. Output robustness of both controllers is good but H controller has poor input stability margin. The net controller order of H is higher than the LQG/LTR method and the control effort of them is in the acceptable range.  相似文献   

9.
This paper is concerned with the robust H control problem for a general class of uncertain nonlinear systems with mixed time-delays. The mixed time-delays consist of both discrete and distributed delays. We aim to design a memoryless state feedback controller such that the closed-loop system is robustly stable for all admissible uncertainties with guaranteed H disturbance rejection attenuation level. By introducing a new Lyapunov–Krasovskii functional that reflects the mixed delays, sufficient conditions are established for the closed-loop system ensuring the robust stability as well as the H performance requirement. The controller design is facilitated in terms of the solvability of a Hamilton–Jacobi inequality. Two numerical examples are utilized to demonstrate the effectiveness of the proposed methods.  相似文献   

10.
This paper investigates a robust H controller design for discrete-time polynomial fuzzy systems based on the sum-of-squares (SOS) approach when model uncertainties and external disturbances are simultaneously considered. At the beginning of the controller design procedure, a general discrete-time polynomial fuzzy control system proposed in this paper is used to represent a nonlinear system containing model uncertainties and external disturbances. Subsequently, through use of a nonquadratic Lyapunov function and the H performance index, the novel SOS-based robust H stability conditions are derived to guarantee the stability of the entire control system. By solving those stability conditions, control gains of the robust H polynomial fuzzy controller are obtained. Because the model uncertainties and external disturbances are considered simultaneously in the controller design procedure, the closed-loop control system achieves greater robustness and H performance against model uncertainties and external disturbances. Moreover, the novel operating-domain-based robust H stability conditions are derived by considering the operating domain constraint to relax the conservativeness of solving the stability conditions. Finally, simulation results demonstrated the availability and effectiveness of the proposed stability conditions, which are more general than those used in existing approaches.  相似文献   

11.
In this paper, an analytic solution of nonlinear H robust controller is first proposed and used in a complete six degree-of-freedom nonlinear equations of motion of flight vehicle system with mass and moment inertia uncertainties. A special Lyapunov function with mass and moment inertia uncertainties is considered to solve the associated Hamilton-Jacobi partial differential inequality (HJPDI). The HJPDI is solved analytically, resulting in a nonlinear H robust controller with simple proportional feedback structure. Next, the control surface inverse algorithm (CSIA) is introduced to determine the angles of control surface deflection from the nonlinear H control command. The ranges of prefilter and loss ratio that guarantee stability and robustness of nonlinear H flight control system implemented by CSIA are derived. Real aerodynamic data, engine data and actuator system of F-16 aircraft are carried out in numerical simulations to verify the proposed scheme. The results show that the responses still keep good convergence for large initial perturbation and the robust stability with mass and moment inertia uncertainties in the permissible ranges of the prefilter and loss ratio for which this design guarantees stability give same conclusion.  相似文献   

12.
This paper presents a gain-scheduled control approach for the vertical takeoff and landing aircraft. The non-linear aircraft dynamics are formulated as a linear parameter varying (LPV) system with external parameter-dependent disturbance, which arisen from the equilibrating between gravity force and nozzles thrust. The disturbance is dependent on the system varying parameter, roll angle, and a constant parameter denoting the normalized gravity force. The controllers are designed in terms of mixed optimization of H performance for disturbance attenuation and relative stability for tracking position command in pitch-yaw plane. The characteristics of the parameter-dependent disturbance are described by an equality condition with a defined annihilation matrix. By exploring the parameter-dependence condition on disturbance into the controller design algorithms based on linear matrix inequalities (LMIs), it is showed that a better performance can be achieved than simply considering it as an external disturbance. The design results are demonstrated by time response simulations.  相似文献   

13.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

14.
This paper develops a robust state-feedback controller for active suspension system with time-varying input delay and wheelbase preview information in the presence of the parameter uncertainties. By employing system augmentation technique, a multi-objective control optimization model is first established and then this controller design is converted to a static full-state feedback controller design with robust H and generalized H2 performance, wherein the model-dependent control gain is evaluated by transforming the related nonlinear matrix inequalities into their corresponding linear matrix inequality forms based on Lyapunov theory, and then LMI (Linear-Matrix-Inequality) technique is applied to solve and obtain the desired controller. A numerical simulation case is finally provided to reveal the effectiveness and advantages of the proposed controller.  相似文献   

15.
A novel hierarchical coordination control strategy (HCCS) is offered to guarantee the stability of four-wheel drive electric vehicles (4WD-EVs) combining the Unscented Kalman filter (UKF). First, a dynamics model of the 4WD-EVs is established, and the UKF-based estimator of sideslip angle and yaw rate is constructed concurrently. Second, the equivalent cornering stiffness coefficients are jointly estimated to consider the impact of vehicle uncertainty parameters on the estimator design. Afterwards, a HCCS with two-level controller is presented. The sideslip angle and yaw rate are controlled by an adaptive backstepping-based yaw moment controller, and the computational burden is relieved by an improved adaptive neural dynamic surface control technology in the upper-level controller. Simultaneously, the optimal torque distribution controller of hub motors is developed to optimize the adhesion utilization ratio of tire in the lower-level controller. Finally, the proposed HCCS has shown effective improvement in the trajectory tracking capability and yaw stability of the 4WD-EVs under various maneuver conditions compared with the traditional Luenberger observer-based and the federal-cubature Kalman filter-based hierarchical controller.  相似文献   

16.
This paper concerns the problem of designing a robust observer-based modified repetitive-control system with a prescribed H disturbance rejection level for a class of strictly proper linear plants with unknown aperiodic disturbances and time-varying structural uncertainties. A correction to the amount of the delay in the repetitive controller is introduced that leads to a significant improvement in tracking performance. An integrated performance index is defined to quantify the overall effect of rejecting the aperiodic disturbances and tracking the periodic reference input. A Lyapunov functional with two tuning parameters is used to derive a linear-matrix-inequality based robust stability condition for the system with a prescribed disturbance-rejection bound. Combining the performance indices, an optimization algorithm that searches for the best combination of state-observer gain and the feedback control gains is developed. A numerical example illustrates the design procedure and demonstrates the effectiveness of the method.  相似文献   

17.
The purpose of this study is to modify the traditional PID controller in order to improve its performance (stability and tracking) by changing the length of integration interval. The performance of the traditional PID controller was improved by changing the length of integration interval to make the most of the returns of the PID and PIσD controllers. The asymptotic stability domain, in terms of the feedback gains, is derived for systems of second order using the modified controller which will be identified as PIIσβD. Comparing this controller with the traditional PID controller and PIσD controller proposed in [1], it proves that it is more accurate and more stable. For illustration and comparison, two examples have been simulated to evaluate the performance of the modified controller. All simulation results indicate that the modified controller is better than the traditional PID controller and the PIσD controller from the accuracy and stability point of view.  相似文献   

18.
With the rapidly increasing penetration level of power generated by large scale photovoltaic (PV) units into the power systems, the effect of the variable output power of the PV unit on the stability of the system cannot be ignored. This paper presents a mathematical approach to study the effect of high infiltration of PV power plant on the small signal stability of a power network and design of optimal fractional order PID (PIλDμ) controller for improving the probabilistic small signal stability of the power systems, taking into consideration the uncertainty of system operating conditions. Due to the probabilistic characteristics of large scale PV power generation, deterministic analysis approaches are not able to fully reveal the impact of high-level PV penetration. At first, this work introduces the main module and mathematical modeling of the large scale PV generation jointly with the single-machine infinite-bus power system. In the following, the paper proposes an efficient method that tunes power system stabilizer (PSS) to have the robustness for damping electro-mechanical oscillations in power systems with incorporated random PV power. For this reason, a robust PSS based on hybridization of PIλDμ controller and Non-dominated Sorting Genetic Algorithm (NSGAII) is designed. This paper targets at finding the optimal gain scheduling of the PIλDμ through the use of the advanced heuristic optimization technique with two objective functions in PV-grid connected systems. The performance of the proposed NSGAII-based PIλDμ controller (NSGAII- PIλDμ) under different solar irradiation, temperature conditions and disturbances is tested. Simulation results illustrate that the model presented can be used in designing of essential controllers for large scale PV power plant.  相似文献   

19.
This paper is concerned with the high performance adaptive robust control problem for an aircraft load emulator (LE). High dynamic capability is a key performance index of load emulator. However, physical load emulators exist a lot of nonlinearities and modeling uncertainties, which are the main obstacles for achieving high performance of load emulator. To handle the modeling uncertainty and achieve adjustable model-based compensation, firstly, the mathematical model of the load emulator is built, and then a nonlinear adaptive robust controller only with output feedback signal is proposed to improve the tracking accuracy and dynamic response capability. The controller is constructed based on the adaptive robust control framework with necessary design modifications required to accommodate uncertainties and nonlinearities of hydraulic load emulator. In this approach, nonlinearities are canceled by output feedback signal; and modeling errors, including parametric uncertainties and uncertain nonlinearities, are dealt with adaptive control and robust control respectively. The resulting controller guarantees a prescribed disturbance attenuation capability in general while achieving asymptotic output tracking in the absence of time-varying uncertainties. Experimental results are obtained to verify the high performance nature of the proposed control strategy, especially the high dynamic capability.  相似文献   

20.
The H control problem is investigated in this paper for a class of networked control systems (NCS) with time-varying delay and packet disordering. A new model is proposed to describe the packet disordering phenomenon and then converted into a parameter-uncertain system with multi-step delay. Based on the obtained system model, a sufficient condition for robust stability of the NCS is derived. Furthermore, an optimization problem with linear matrix inequalities (LMIs) constraints is formulated to design the state feedback H controller such that the closed-loop NCS is robust stable and has an optimal H disturbance attenuation level. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号