首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on a systematic constrained fuzzy integral sliding mode controller design for a class of uncertain discrete-time nonlinear systems which can be represented as Takagi-Sugeno (T-S) fuzzy models. The contributions are to consider constraints on the control input amplitude and control input amplitude rate and to extend the existing pole-placement design technique for designing gain matrices of the fuzzy sliding surface. Moreover, a dynamic-gain observer along with H performance is proposed for attenuating disturbance, which generalizes the existing results on the Proportional Observer (PO), the Proportional Integral Observer (PIO) and the dynamic observer (DO). Finally, the dynamic-observer-based constrained fuzzy integral sliding mode controller is designed. All the proposed design conditions are represented in terms of LMIs-based ones. The methods are studied for not only single-input single-output (SISO) but also multi-input multi-output (MIMO) systems. In the end, the proposed approaches are evaluated on practical and numerical systems to illustrate the superiority of the proposed control scheme.  相似文献   

2.
This paper is concerned with control design for a generalized Takagi–Sugeno fuzzy system. The Takagi–Sugeno fuzzy system generally describes nonlinear systems by employing local linear system representations, while a generalized fuzzy system to be considered in this paper describes even a wider class of nonlinear systems by representing locally nonlinear systems. For such a generalized system, a stabilizing controller design method is proposed by introducing a new class of non-PDC controllers. A non-PDC controller is a generalized controller of PDC one, which is a traditional fuzzy controller. Stabilizing controller design conditions are given in terms of a set of linear matrix inequalities (LMIs), which are easily numerically solvable. A relaxation method is used to reduce the conservatism of design conditions. Finally, numerical examples are given to illustrate our nonlinear control design and to show the effectiveness over other existing results.  相似文献   

3.
This paper presents an effective approach to stabilize nonlinear multiple time-delay (NMTD) interconnected systems via a composite of fuzzy controllers and dithers. First, a neural-network (NN) model is employed to approximate each subsystem. Then, the dynamics of the NN model is converted into a linear differential inclusion (LDI) state-space representation. Next, in terms of Lyapunov?s direct method, a delay-dependent stability criterion is derived to guarantee the exponential stability of the NMTD interconnected system. Subsequently, the stability conditions of this criterion are reformulated into a linear matrix inequality (LMI). Based on the LMI, a robustness design of fuzzy control is synthesized not only to stabilize the NMTD interconnected system but also to achieve the optimal H performance by minimizing the disturbance attenuation level. A set of high-frequency signals (commonly referred to as dithers) is simultaneously injected to stabilize the NMTD interconnected system when the designed fuzzy controllers cannot stabilize it. If the dithers’ frequencies are high enough, the outputs of the dithered interconnected system and those of its corresponding mathematical model, the relaxed interconnected system, can be made as close as desired. This makes it possible to get a rigorous prediction of the stability of the dithered interconnected system by establishing the stability of the relaxed interconnected system. Finally, a numerical example with simulations is given to illustrate the feasibility of our approach.  相似文献   

4.
For continuous-time nonlinear systems represented by Takagi–Sugeno fuzzy models, a new H reduced-order-observer based controller synthesis structure is investigated in this paper. By the fuzzy reduced-order observer and fuzzy controller, an augmented error system composed of the estimation and control errors is obtained. The fuzzy modeling residual terms are seen as part of the external disturbance, and an extra design matrix is added to facilitate the design process. The robustness and stability conditions are given based on Lyapunov function approach, then the conditions are transformed into convex form to facilitate the numerical solving process. Finally, by the comparison with existing methods in simulation section, the control performance and conservativeness reduction effects of the proposed methods are verified.  相似文献   

5.
A novel adaptive control with σ-modification for uncertain nonlinear systems is proposed in the paper. The application of conventional adaptive control is severely limited by the problems of construction of Lyapunov function and parameter drift because of non-parametric uncertainties. The proposed adaptive control that is on the basis of the immersion and invariance theory and σ-modification can be used to deal with these problems to some extent. It turns out to be a structured design method without requiring a Lyapunov function in the design level and robust to non-parametric uncertainties. Moreover, constrained command filter backstepping is adopted to meet the amplitude and rate constraints on the states and actuators. The uniformly ultimately bounded stability of the closed-loop system has been analyzed by Lyapunov theory with parametric and non-parametric uncertainties of the controlled model. To demonstrate the design flexibility, the method is applied to the position tracking control system design of a mass-damper-spring system and the flight control system design of a scramjet-powered air-breathing hypersonic vehicle. Finally, the effectiveness of the proposed adaptive control method is illustrated by numerical simulations.  相似文献   

6.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

7.
This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques.  相似文献   

8.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

9.
This paper addresses the positive filter design problem for a class of continuous-discrete Roesser model in Takagi-Sugeno fuzzy form. Both the observer-based and the general form of filters are designed with l1 performance constraint. By utilizing the co-positive Lyapunov function approach, sufficient criteria are derived in the form of linear programming, which not only guarantee the existence of the positive lower-bounding/upper-bounding filters but also assure the resulting filtering error system to be asymptotically stable and having a prescribed l1-gain performance index. In addition, the explicit design schemes for the corresponding filter parameters are also presented. Finally, two numerical examples are provided to illustrate effectiveness of the proposed results.  相似文献   

10.
This paper addresses a novel fuzzy adaptive control method for a class of uncertain nonlinear multi-input multi-output (MIMO) systems with unknown dead-zone outputs and immeasurable states. The immeasurable states under consideration are estimated by designing a fuzzy state observer. Based on the properties of the Nussbaum-type function, the difficulty of fuzzy adaptive control caused by the unknown dead zone outputs of MIMO nonlinear uncertain systems is overcome. The presented design algorithm not only guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, but also ensures that the outputs of the MIMO system converge to a small neighborhood of the desired outputs. The main contributions of this research lie in that the developed MIMO systems are more general, and an efficient design method of output-feedback controller is investigated for the studied MIMO systems, which is more applicable in practical environment. Simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

11.
This paper investigates the tracking control problem for output constrained stochastic nonlinear systems under quantized input. The main challenge of considering such dynamics lies in the fact that theirs have both input and output constraints, making the standard backstepping technique fail. To address this challenge, the introduction of nonlinear mapping transforms the constrained nonlinear systems into unconstrained nonlinear systems, which not only avoids the emergence of feasibility conditions but also simplifies the structure of designed controller. The obstacle caused by quantized input is successfully resolved by exploiting the decomposition of hysteresis quantizer. Additionally, the uncertain nonlinearities are approximated by fuzzy logic systems during the control design process. Under the proposed quantized tracking control scheme, the output tracking error converges to an arbitrarily small neighborhood of origin and all signals in the closed-loop system remain bounded in probability. Simultaneously, it can make sure that the output constraint isn’t violated. Ultimately, both a numerical example and a practical example are provided to clarify the effectiveness of the control strategy.  相似文献   

12.
This paper addresses the observer-based dynamic event-triggered (DET) sliding mode control (SMC) problem for fuzzy singular semi-Markovian jump systems (FSS-MJSs) subject to generalized dissipative performance, in which a novel double-quantized structure is reasonably merged into a unified model. The main aim of this paper is to develop a mode-dependent adaptive sliding mode control (ASMC) law through the DET rule, which not only makes the closed-loop systems mean-square admissibility and generalized dissipative, but also the finite-time reachability around the predefined sliding mode surface (SMS) can be achieved. Firstly, in order to improve the data transmission efficiency and save network bandwidth resources, DET and doubled-quantized-based control protocol are introduced, in which the event-based threshold function is dynamically regulated and the data of input and output are both quantized; Secondly, due to the sensor information constraints, system state information is not always obtained in practice, hence, a suitable observer design can make up for this defect. Meantime, in terms of elegant linearization technique and implicit function theorem, the uniqueness of the solution for FSS-MJSs is also established; Additionally, by making use of the Lyapunov functional and linear matrix inequality (LMI) technique, both the desired SMC gains, observer gains and triggering parameter matrices are co-designed, more than that the derivative singular matrix is also integrated into the whole design process such that the derived conditions are much more easily to be checked; Finally, a numerical example and a practical application example are co-given to verify the effectiveness of our design mentality.  相似文献   

13.
This work concentrates on the control design of interval type-2 (IT2) T–S fuzzy systems under probabilistic saturation constraints. The actual control signals are allowed to exceed some preset thresholds with a certain frequency. Meanwhile, the sensors are governed by the multi-node round-robin scheduling protocol, which permits more than one sensors to transmit their information at every moment. The main objective is to synthesize a fuzzy controller such that the closed-loop system is locally stochastically stable under probabilistic saturated constraints and the multi-node round-robin scheduling protocol. To this end, the probabilistic saturation constraints are characterized by a Bernoulli-distributed stochastic process, and the received state at the controller side is formulated based on an updating rule and a compensation strategy. By constructing new membership functions, a token-dependent control law is subsequently designed. The stability analysis is facilitated by a modified sector condition dealing with the saturation nonlinearities. With suitable selection of initial states, sufficient conditions are derived to achieve the local stochastic stability of the closed-loop IT2 T–S fuzzy system. A larger domain of stochastic stability can be obtained via a searching algorithm. Finally, the proposed method is illustrated via a simulation example.  相似文献   

14.
Evolutionary algorithm-based fuzzy PD control of spillway gates of dams   总被引:1,自引:0,他引:1  
In this paper, an evolutionary algorithm (EA)-based fuzzy proportional-derivative (PD)-type controller is employed to reservoir control of dams with the purpose of operating spillway gates during any flood of any magnitude, which is not predictable beforehand. EA is used to evolve the main parameters of the fuzzy PD controller. The use of the EA, in conjunction with a systematic neighborhood structure for the determining of fuzzy rule-base parameters, leads to a significant improvement in the performance of the controller. The major objective of the controller is to achieve better system performance over the conventional control methods. In order to demonstrate the high performance of the presented method, we simulate the control system using different probable inflow hydrographs of various magnitudes. The simulation results indicate that the EA-based fuzzy PD controller not only performs an accurate and efficient solution, but also exhibits more desirable and reliable results than the conventional approaches.  相似文献   

15.
This paper focuses on the observer-based fault-tolerant control problem for the discrete-time nonlinear systems with the perturbation and the fault signals. First, the nonlinear term with perturbation is put into the local nonlinear part so that the nonlinear system with perturbation can be described as an interval type-1 (IT1) T-S fuzzy system. Then, based on the unknown input observer technology, the IT1 T-S fuzzy fault estimation (FE) observer scheme is presented to obtain the real-time FE information and decouple the local nonlinear part from the estimation error system, where the design complexity and the computational burden are reduced simultaneously. Second, based on the real-time FE information, an FE-based interval type-2 (IT2) T-S fuzzy fault-tolerant control scheme is presented to achieve the compensation for the influence of the fault signal and the stabilization for the system. Different from the traditional methods, a mixed design scheme, which is based on the IT1 T-S fuzzy fault estimation observer method and the IT2 T-S fuzzy fault-tolerant controller method, is proposed in this paper. This strategy can not only reduce the computational burden, but also obtain a less conservative result. Finally, the effectiveness of the mixed design approach is illustrated by an example.  相似文献   

16.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

17.
The main control goal of the fed-batch process is to maximize the yield of target product as well as to minimize the operation costs simultaneously. Considering the existence of time delay and the switching nature in the fed-batch process, a time-delayed switched system is proposed to formulate the 1,3-propanediol (1,3-PD) production process. Some important properties of the system are also discussed. Taking the switching instants and the terminal time as the control variables, a free terminal time delayed optimal control problem is then presented. Using a time-scaling transformation and parameterizing the switching instants into new parameters, an equivalently optimal control problem is investigated. A numerical solution method is developed to seek the optimal control strategy by the smoothing approximation method and the gradient of the cost functional together with that of the constraints. Numerical results show that the mass of target product per unit time at the terminal time is increased considerably.  相似文献   

18.
This paper discusses the problem of the fuzzy sliding mode control for a class of disturbed systems. First, a fuzzy auxiliary controller is constructed based on a feedback signal not only to estimate the unknown control term, but also participates in the sliding mode control due to the fuzzy rule employed. Then, we extend our theory into the cases, where some kind of system information can not be obtained, for better use of our theoretical results in real engineering. Finally, some typical numerical examples are included to demonstrate the effectiveness and advantage of the designed sliding mode controller.  相似文献   

19.
Using the interval type-2 Takagi–Sugeno (IT-2 T-S) fuzzy control method, this paper formulates a class of non-autonomous interconnected dynamical system (IDS) with discontinuities. Under the differential inclusion (DI) framework, the fixed-time stabilization (FXTS) problem is studied via indefinite derivative Lyapunov approach, where the time-derivative of constructed Lyapunov function doesn’t have to be negative/semi-negative. By designing novel IT-2 T-S fuzzy switching control protocol possessing time-varying control gain coefficients, several sufficient stabilization conditions are obtained to determine the system’s stability in fixed time. Furthermore, the settling time (ST) of FXTS is estimated. Due to the time-varying property of control gain coefficients and indefiniteness of system’s parameters, the advantage of the IT-2 T-S fuzzy switching control protocol designed in this paper is that its control gain coefficients are not only more flexible, but also can affect the estimation of ST. Finally, the designed control protocols and FXTS results are confirmed by numerical example.  相似文献   

20.
In this work, the finite-time extended dissipativity of the interval type-2 (IT2) fuzzy systems with probabilistic time-varying delay is discussed via resilient memory sampled-data control. To enable the stability analysis and control combination, an IT2 fuzzy model is employed to represent the dynamics of nonlinear systems of which the parameter uncertainties are taken by IT2 membership functions distinguish by the lower and upper membership functions. The main objective of this paper is to design a resilient memory sampled-data controller such that the resulting closed-loop system is finite-time bounded and satisfies extended dissipative performance. Moreover, the solvability of the derived conditions not only depends on the size of the delay but also on the probabilistic distribution of the delay taking values in some interval, thus probabilistic delay protocol is encountered in the IT2 fuzzy model. By employing suitable Lyapunov-Krasovskii functional (LKF) along with Wirtinger-based inequality, a set of sufficient conditions ensuring the finite-time extended dissipative performance for IT2 fuzzy systems are derived in terms of linear matrix inequalities (LMIs). Finally, two numerical simulations are presented to reveal the effectiveness of the developed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号