首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a microfluidic device enabling culture of vascular smooth muscle cells (VSMCs) where extracellular matrix coating, VSMC seeding, culture, and immunostaining are demonstrated in a tubing-free manner. By optimizing droplet volume differences between inlets and outlets of micro channels, VSMCs were evenly seeded into microfluidic devices. Furthermore, the effects of extracellular matrix (e.g., collagen, poly-l-Lysine (PLL), and fibronectin) on VSMC proliferation and phenotype expression were explored. As a platform technology, this microfluidic device may function as a new VSMC culture model enabling VSMC studies.  相似文献   

2.
Microfluidic devices have been established as useful platforms for cell culture for a broad range of applications, but challenges associated with controlling gradients of oxygen and other soluble factors and hemodynamic shear forces in small, confined channels have emerged. For instance, simple microfluidic constructs comprising a single cell culture compartment in a dynamic flow condition must handle tradeoffs between sustaining oxygen delivery and limiting hemodynamic shear forces imparted to the cells. These tradeoffs present significant difficulties in the culture of mesenchymal stem cells (MSCs), where shear is known to regulate signaling, proliferation, and expression. Several approaches designed to shield cells in microfluidic devices from excessive shear while maintaining sufficient oxygen concentrations and transport have been reported. Here we present the relationship between oxygen transport and shear in a "membrane bilayer" microfluidic device, in which soluble factors are delivered to a cell population by means of flow through a proximate channel separated from the culture channel by a membrane. We present an analytical model that describes the characteristics of this device and its ability to independently modulate oxygen delivery and hemodynamic shear imparted to the cultured cells. This bilayer configuration provides a more uniform oxygen concentration profile that is possible in a single-channel system, and it enables independent tuning of oxygen transport and shear parameters to meet requirements for MSCs and other cells known to be sensitive to hemodynamic shear stresses.  相似文献   

3.
We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized. Both effects impede a quantitative determination of forces experienced by cells in a constriction. Our study is based on a new microfluidic device composed of two successive constrictions, combined with optical interference microscopy measurements to characterize the contact zone between the cell and the walls of the channel. A cell squeezed in a first constriction obstructs most of the channel cross-section, which strongly limits leaks around cells. The rheological properties of the cell are subsequently probed during its entry in a second narrower constriction. The pressure force is determined from the pressure drop across the device, the cell velocity, and the width of the gutters formed between the cell and the corners of the channel. The additional friction force, which has never been analyzed for moving and constrained cells before, is found to involve both hydrodynamic lubrication and surface forces. This friction results in the existence of a threshold for moving the cells and leads to a non-linear behavior at low velocity. The friction force can nevertheless be assessed in the linear regime. Finally, an apparent viscosity of single cells can be estimated from a numerical prediction of the viscous dissipation induced by a small step in the channel. A preliminary application of our method yields an apparent loss modulus on the order of 100 Pa s for leukocytes THP-1 cells, in agreement with the literature data.  相似文献   

4.
Inertial microfluidics is an emerging class of technologies developed to separate circulating tumor cells (CTCs). However, defining design parameters and flow conditions for optimal operation remains nondeterministic due to incomplete understanding of the mechanics, which has led to challenges in designing efficient systems. Here, we perform a parametric study of the inertial focusing effects observed in low aspect ratio curvilinear microchannels and utilize the results to demonstrate the isolation of CTCs with high purity. First, we systematically vary parameters including the channel height, width, and radius of curvature over a wide range of flow velocities to analyze its effect on size dependent differential focusing and migration behaviors of binary (10 μm and 20 μm) particles. Second, we use these results to identify optimal flow regimes to achieve maximum separation in various channel configurations and establish design guidelines to readily provide information for developing spiral channels tailored to potentially arbitrary flow conditions that yield a desired equilibrium position for optimal size based CTC separation. Finally, we describe a fully integrated, sheath-less cascaded spiral microfluidic device to continuously isolate CTCs. Human breast cancer epithelial cells were successfully extracted from leukocytes, achieving 86.76% recovery, 97.91% depletion rate, and sustaining high viability upon collection to demonstrate the versatility of the device. Importantly, this device was designed without the cumbersome trail-and-error optimization process that has hindered the development of designing such inertial microfluidic systems.  相似文献   

5.
Single cell trapping increasingly serves as a key manipulation technique in single cell analysis for many cutting-edge cell studies. Due to their inherent advantages, microfluidic devices have been widely used to enable single cell immobilization. To further improve the single cell trapping efficiency, this paper reports on a passive hydrodynamic microfluidic device based on the “least flow resistance path” principle with geometry optimized in line with corresponding cell types. Different from serpentine structure, the core trapping structure of the micro-device consists of a series of concatenated T and inverse T junction pairs which function as bypassing channels and trapping constrictions. This new device enhances the single cell trapping efficiency from three aspects: (1) there is no need to deploy very long or complicated channels to adjust flow resistance, thus saving space for each trapping unit; (2) the trapping works in a “deterministic” manner, thus saving a great deal of cell samples; and (3) the compact configuration allows shorter flowing path of cells in multiple channels, thus increasing the speed and throughput of cell trapping. The mathematical model of the design was proposed and optimization of associated key geometric parameters was conducted based on computational fluid dynamics (CFD) simulation. As a proof demonstration, two types of PDMS microfluidic devices were fabricated to trap HeLa and HEK-293T cells with relatively significant differences in cell sizes. Experimental results showed 100% cell trapping and 90% single cell trapping over 4 × 100 trap sites for these two cell types, respectively. The space saving is estimated to be 2-fold and the cell trapping speed enhancement to be 3-fold compared to previously reported devices. This device can be used for trapping various types of cells and expanded to trap cells in the order of tens of thousands on 1-cm2 scale area, as a promising tool to pattern large-scale single cells on specific substrates and facilitate on-chip cellular assay at the single cell level.  相似文献   

6.
Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 μm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest.  相似文献   

7.
Ma D  Chen H  Li Z  He Q 《Biomicrofluidics》2010,4(4):44107
Cell culture and harvest are the most upstream operation for a completely integrated cell assay chip. In our previous work, thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was successfully grafted onto polydimethylsiloxane (PDMS) surface via benzophenone-initiated photopolymerization. In the present work, the PNIPAAm-grafted-PDMS (PNIPAAm-g-PDMS) surface was explored for thermomodulated cell culture and noninvasive harvest in microfluidic channels. Using COS 7 fibroblast from African green monkey kidney as the model cells, the thermomodulated adhering and detaching behaviors of the cells on the PNIPAAm-g-PDMS surfaces were optimized with respect to PNIPAAm-grafting yields and gelatin modification. The viability of the cells cultured on and harvested from the PNIPAAm-g-PDMS surface with the thermomodulated noninvasive protocol was estimated against the traditional cell culture∕harvest method involving trypsin digestion. The configuration of the microchannel on the PNIPAAm-g-PDMS chip was evaluated for static cell culture. Using a pipette-shaped PNIPAAm-g-PDMS microchannel, long-term cell culture could be achieved at 37 °C with periodic change of the culture medium every 12 h. After moving the microchip from the incubator set at 37 °C to the room temperature, the proliferated cells could be spontaneously detached from the PNIPAAm-g-PDMS surface of the upstream chamber and transferred by a gentle fluid flow to the downstream chamber, wherein the transferred cells could be subcultured. The thermomodulated cell culture, harvest, and passage operations on the PNIPAAm-g-PDMS microfluidic channels were demonstrated.  相似文献   

8.
Robust bubble-free priming of complex microfluidic chips represents a critical, yet often unmet prerequisite to enable their practical and widespread application. Towards this end, the usage of a network of capillary stop valves as a generic design feature is proposed. Design principles, numerical simulations, and their application in the development of a microfluidic cell culture device are presented. This chip comprises eight parallel chambers for the assembly and cultivation of human hepatocytes and endothelial cells. The inlet channel divides into cell chambers, after which the flows are reunited to a single chip outlet. Dimensions and geometry of channels and cell chambers are designed to yield capillary burst pressures sequentially increasing towards the chip outlet. Thus, progress of liquid flow through the device is predefined by design and enclosure of air bubbles inside the microfluidic structures is efficiently avoided. Capillary stop valves were designed using numerical simulations. Devices were fabricated in cyclic olefin polymer. Pressure during filling was determined experimentally and is in good agreement with data obtained from simulation.  相似文献   

9.
We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.  相似文献   

10.
Microfluidic devices have emerged as important tools for experimental physiology. They allow to study the effects of hydrodynamic flow on physiological and pathophysiological processes, e.g., in the circulatory system of the body. Such dynamic in vitro test systems are essential in order to address fundamental problems in drug delivery and targeted imaging, such as the binding of particles to cells under flow. In the present work an acoustically driven microfluidic platform is presented in which four miniature flow channels can be operated in parallel at distinct flow velocities with only slight inter-experimental variations. The device can accommodate various channel architectures and is fully compatible with cell culture as well as microscopy. Moreover, the flow channels can be readily separated from the surface acoustic wave pumps and subsequently channel-associated luminescence, absorbance, and/or fluorescence can be determined with a standard microplate reader. In order to create artificial blood vessels, different coatings were evaluated for the cultivation of endothelial cells in the microchannels. It was found that 0.01% fibronectin is the most suitable coating for growth of endothelial monolayers. Finally, the microfluidic system was used to study the binding of 1 μm polystyrene microspheres to three different types of endothelial cell monolayers (HUVEC, HUVECtert, HMEC-1) at different average shear rates. It demonstrated that average shear rates between 0.5 s−1 and 2.25 s−1 exert no significant effect on cytoadhesion of particles to all three types of endothelial monolayers. In conclusion, the multichannel microfluidic platform is a promising device to study the impact of hydrodynamic forces on cell physiology and binding of drug carriers to endothelium.  相似文献   

11.
In this article, we present a microfluidic platform for passive fluid pumping for pump-free perfusion cell culture, cell-based assay, and chemical applications. By adapting the passive membrane-controlled pumping principle from the previously developed perfusion microplate, which utilizes a combination of hydrostatic pressure generated by different liquid levels in the wells and fluid wicking through narrow strips of a porous membrane connecting the wells to generate fluid flow, a series of pump-free membrane-controlled perfusion microfluidic devices was developed and their use for pump-free perfusion cell culture and cell-based assays was demonstrated. Each pump-free membrane-controlled perfusion microfluidic device comprises at least three basic components: an open well for generating fluid flow, a micron-sized deep chamber/channel for cell culture or for fluid connection, and a wettable porous membrane for controlling the fluid flow. Each component is fluidically connected either by the porous membrane or by the micron-sized deep chamber/channel. By adapting and incorporating the passive membrane-controlled pumping principle into microfluidic devices, all the benefits of microfluidic technologies, such as small sample volumes, fast and efficient fluid exchanges, and fluid properties at the micro-scale, can be fully taken advantage of with this pump-free membrane-controlled perfusion microfluidic platform.  相似文献   

12.
The physiology of vascular endothelial cells is strongly affected by fluid shear stress on their surface. In this study, a microfluidic assay was employed to analyze the alignment of actin filaments in endothelial cells in response to shear stress. When cells were cultured in microfluidic channels and subjected to shear stress, the alignment of filaments in the channel direction was significantly higher than in static cultures. By adding inhibitory drugs, the roles of several signaling proteins in the process of alignment were determined. Thus, it is shown how microfluidic technology can be employed to provide a mechanistic insight into cell physiology.  相似文献   

13.
Song H  Chen T  Zhang B  Ma Y  Wang Z 《Biomicrofluidics》2010,4(4):44104
In vitro sensitivity testing of tumor cells could rationalize and improve the choice of chemotherapy and hormone therapy. In this report, a microfluidic device made from poly(dimethylsiloxane) and glass was developed for an assay of drug induced cytotoxicity. We evaluated the apoptotic and proliferation-inhibitory effects of anticancer drugs mitomycin C (MMC) and tamoxifen (TAM) using MCF-7 breast cancer cells. MMC and TAM both induced apoptosis and inhibited proliferation of MCF-7 cells in a concentration-dependent manner. MMC caused the expression of antiapoptotic protein Bcl-2 a dose-dependent reduction in MCF-7 cells. The expression of Bcl-2 did not change significantly in MCF-7 cells treated by TAM. The results in the microfluidic device were correlated well with the data obtained from the parallel experiments carried out in the conventional culture plates. The developed microfluidic device could be a potential useful tool for high content screening and high throughput screening research.  相似文献   

14.
Axon path-finding plays an important role in normal and pathogenic brain development as well as in neurological regenerative medicine. In both scenarios, axonal growth is influenced by the microenvironment including the soluble molecules and contact-mediated signaling from guiding cells and cellular matrix. Microfluidic devices are a powerful tool for creating a microenvironment at the single cell level. In this paper, an asymmetrical-channel-based biochip, which can be later incorporated into microfluidic devices for neuronal network study, was developed to investigate geometric as well as supporting cell control of polarized axonal growth in forming a defined neuronal circuitry. A laser cell deposition system was used to place single cells, including neuron-glia pairs, into specific microwells of the device, enabling axonal growth without the influence of cytophilic∕phobic surface patterns. Phase microscopy showed that a novel "snag" channel structure influenced axonal growth in the intended direction 4:1 over the opposite direction. In heterotypic experiments, glial cell influence over the axonal growth path was observed with time-lapse microscopy. Thus, it is shown that single cell and heterotypic neuronal path-finding models can be developed in laser patterned biochips.  相似文献   

15.
We present a novel 3D hybrid assembly of a polymer microfluidic chip with polycarbonate track-etched membrane (PCTEM) enabling membrane-supported cell culture. Two chip designs have been developed to establish either diffusive or convective reagent delivery using the integrated PCTEM. While it is well suited to a range of cell-based assays, we specifically employ this platform for the screening of a common antitumor chemotoxic agent (mitomycin C – MMC) on the HL60 myeloid leukemia cell line. The toxic activity of MMC is based on the generation of severe DNA damage in the cells. Using either mode of operation, the HL60 cells were cultured on-chip before, during, and after exposure to MMC at concentrations ranging from 0 to 50 μM. Cell viability was analysed off-chip by the trypan blue dye exclusion assay. The results of the on-chip viability assay were found to be consistent with those obtained off-chip and indicated ca. 40% cell survival at MMC concentration of 50 μM. The catalogue of capabilities of the here described cell assay platform comprises of (i) the culturing of cells either under shear-free conditions or under induced through-membrane flows, (ii) the tight time control of the reagent exposure, (iii) the straightforward assembly of devices, (iv) the flexibility on the choice of the membrane, and, prospectively, (v) the amenability for large-scale parallelization.  相似文献   

16.
Asthana A  Ho Lee K  Kim KO  Kim DM  Kim DP 《Biomicrofluidics》2012,6(1):12821-128219
In this paper, we have presented a non-lithographic embedded template method for rapid and cost-effective fabrication of a selectively permeable calcium-alginate (Ca-alginate) based microfluidic device with long serpentine delay channel. To demonstrate the versatility of the presented method, we have demonstrated two different strategies to fabricate serpentine long delay channels without using any sophisticated microfabrication techniques, in formal lab atmosphere. The procedure presented here, also, enables the preparation of a multilayered microfluidic device with channels of varying dimensions, in a single device without using any sophisticated micromachining instrumentation. In addition, we have also qualitatively studied the diffusion of small and large molecules from a Ca-alginate based microfluidic device and proposed a method to effectively control the out-flow of macro biomolecules from the crosslinked Ca-alginate matrix to create a selectively permeable matrix required for various biological and biomimetic applications, as mentioned in the Introduction section of this work.  相似文献   

17.
In this paper, we have presented a non-lithographic embedded template method for rapid and cost-effective fabrication of a selectively permeable calcium-alginate (Ca-alginate) based microfluidic device with long serpentine delay channel. To demonstrate the versatility of the presented method, we have demonstrated two different strategies to fabricate serpentine long delay channels without using any sophisticated microfabrication techniques, in formal lab atmosphere. The procedure presented here, also, enables the preparation of a multilayered microfluidic device with channels of varying dimensions, in a single device without using any sophisticated micromachining instrumentation. In addition, we have also qualitatively studied the diffusion of small and large molecules from a Ca-alginate based microfluidic device and proposed a method to effectively control the out-flow of macro biomolecules from the crosslinked Ca-alginate matrix to create a selectively permeable matrix required for various biological and biomimetic applications, as mentioned in the Introduction section of this work.  相似文献   

18.
Accurately mimicking the complexity of microvascular systems calls for a technology which can accommodate particularly small sample volumes while retaining a large degree of freedom in channel geometry and keeping the price considerably low to allow for high throughput experiments. Here, we demonstrate that the use of surface acoustic wave driven microfluidics systems successfully allows the study of the interrelation between melanoma cell adhesion, the matrix protein collagen type I, the blood clotting factor von Willebrand factor (vWF), and microfluidic channel geometry. The versatility of the tool presented enables us to examine cell adhesion under flow in straight and bifurcated microfluidic channels in the presence of different protein coatings. We show that the addition of vWF tremendously increases (up to tenfold) the adhesion of melanoma cells even under fairly low shear flow conditions. This effect is altered in the presence of bifurcated channels demonstrating the importance of an elaborate hydrodynamic analysis to differentiate between physical and biological effects. Therefore, computer simulations have been performed along with the experiments to reveal the entire flow profile in the channel. We conclude that a combination of theory and experiment will lead to a consistent explanation of cell adhesion, and will optimize the potential of microfluidic experiments to further unravel the relation between blood clotting factors, cell adhesion molecules, cancer cell spreading, and the hydrodynamic conditions in our microcirculatory system.  相似文献   

19.
Diffusion of autocrine and paracrine signaling molecules allows cells to communicate in the absence of physical contact. This chemical-based, long-range communication serves crucial roles in tissue function, activation of the immune system, and other physiological functions. Despite its importance, few in vitro methods to study cell-cell signaling through paracrine factors are available today. Here, we report the design and validation of a microfluidic platform that enables (i) soluble molecule-cell and/or (ii) cell-cell paracrine signaling. In the microfluidic platform, multiple cell populations can be introduced into parallel channels. The channels are separated by arrays of posts allowing diffusion of paracrine molecules between cell populations. A computational analysis was performed to aid design of the microfluidic platform. Specifically, it revealed that channel spacing affects both spatial and temporal distribution of signaling molecules, while the initial concentration of the signaling molecule mainly affects the concentration of the signaling molecules excreted by the cells. To validate the microfluidic platform, a model system composed of the signaling molecule lipopolysaccharide, mouse macrophages, and engineered human embryonic kidney cells was introduced into the platform. Upon diffusion from the first channel to the second channel, lipopolysaccharide activates the macrophages which begin to produce TNF-α. The TNF-α diffuses from the second channel to the third channel to stimulate the kidney cells, which express green fluorescent protein (GFP) in response. By increasing the initial lipopolysaccharide concentration an increase in fluorescent response was recorded, demonstrating the ability to quantify intercellular communication between 3D cellular constructs using the microfluidic platform reported here. Overall, these studies provide a detailed analysis on how concentration of the initial signaling molecules, spatiotemporal dynamics, and inter-channel spacing affect intercellular communication.  相似文献   

20.
This paper reports a two-layered polydimethylsiloxane microfluidic device—Flip channel, capable of forming uniform-sized embryoid bodies (EBs) and performing stem cell differentiation within the same device after flipping the microfluidic channel. The size of EBs can be well controlled by designing the device geometries, and EBs with multiple sizes can be formed within a single device to study EB size-dependent stem cell differentiation. During operation of the device, cells are positioned in the designed positions. As a result, observation and monitoring specific population of cells can be achieved for further analysis. In addition, after flipping the microfluidic channel, stem cell differentiation from the EBs can be performed on an unconfined flat surface that is desired for various differentiation processes. In the experiments, murine embryonic stem cells (ES-D3) are cultured and formed EBs inside the developed device. The size of EBs is well controlled inside the device, and the neural differentiation is performed on the formed EBs after flipping the channel. The EB size-dependent stem cell differentiation is studied using the device to demonstrate its functions. The device provides a useful tool to study stem cell differentiation without complicated device fabrication and tedious cell handling under better-controlled microenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号