首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
3.
ABSTRACT

We present Mobile Augmented-Reality Games for Instructional Support (MAGIS), a framework for the development of mobile augmented-reality (AR) games for education. The framework supports off-the-shelf, state-of-the-art technologies that enable AR tracking and rendering on consumer-level mobile devices, and integrates these technologies with content-generation tools that simplify the development of educational AR games, especially those that extensively use narrative-based game design and player-location tracking such as location-based historical or museum adventure games. We use Igpaw: Intramuros, a proof-of-concept game developed using MAGIS, to help describe the current state of the framework and to show its efficacy for implementing outdoor location-based educational games, and we briefly outline future development plans to improve MAGIS’ AR support (especially those involving indoor scenarios) as well as to improve the instructional design and authoring phases of AR applications written using this framework.  相似文献   

4.
Suvi Tala 《Science & Education》2009,18(3-4):275-298
Science and technology education, both as distinct and integrated subjects, relies on a traditional conception of science and technology as quite different and separated enterprises. A closer look at the scientific progress, however, reveals the traditional view as being one-sided. This study scrutinises the unification of science and technology education from the viewpoint of recent studies, which have revealed an unexpectedly deep bi-directional relationship between the development of science and technology. The highly cognitive role of technology in scientific knowledge construction through experimentation reveals the need for a new unifying view, technoscience, and its consideration within science education. Since technoscience promotes a scientifically sound and authentic view on the relationship between science and technology, it increases the coherence of learning processes by combining these elements, which have been traditionally separated within education. Additionally, technoscience supports in a natural way the teaching solutions, which put weight on personal conceptualization for learning.  相似文献   

5.
Vygotsky (1986) draws attention to the interrelationship between thought and language and other aspects of mind. Although not widely acknowledged, Vygotsky (1999) also drew attention to the search for the relations between cognition and emotions. This paper discusses the findings of a study which examined imaginary scientific situations within the early years. The central research questions examined: What is the emotional nature of scientific learning? and How does affective imagination support early childhood science learning? Video observations were made of the teaching of science from one site in a south-eastern community in Australia (232 h of video observations). The teachers used fairy tales and Slowmation as cultural devices to support the concept formation of 3- and 4-year-old children (n?=?53; range of 3.3 to 4.4; mean of 3.8 years). The findings of this under-researched area (e.g. Roth, Mind, Culture, and Activity 15:2–7, 2008) make a contribution to understanding how affective imagination can work in science education in the early years.  相似文献   

6.
Recent studies do not find consistent relationships between teacher degree, major, and certification, and PK outcomes (Early, D. M., Bryant, D. M., Pianta, R. C., Clifford, R. M., Burchinal, M. R., Ritchie, S., et al. (2006). Are teachers’ education, major, and credentials related to classroom quality and children's academic gains in pre-kindergarten? Early Childhood Research Quarterly, 21, 174–195; Early, D. M., Maxwell, K. L., Burchinal, M., Bender, R. H., Ebanks, C., Henry, G. T., et al. (2007). Teachers’ education, classroom quality, and young children's academic skills: Results from seven studies of preschool programs. Child Development, 78, 558–580), raising questions about the impact of the degrees and certifications of PK teachers on children's learning. The researchers note that these findings do not support the conclusion that teacher education does not matter for children's learning. However, they do not provide specific directions for policymakers who decide on the minimum requirements for teacher qualifications in PK programs. This commentary raises issues for researchers and policymakers about whether PK is part of a K-12 educational continuum, how teachers are prepared to teach, how research is designed to inform policy, and the importance of developmental science in policy-relevant education research. As part of a future PK-16 education system, we propose that the BA be the entry requirement for PK as it is for K-12 teachers, followed by professional education combined with extensive classroom experiences.  相似文献   

7.
Presently, most physical education teachers in the United States are White Americans and from middle class families. In fact, 83 % of all teachers in public schools are White Americans, whereas approximately 10 % of all African American teachers are representative of all teachers in the United States. A student might feel cultural dissonance that she or he is behaving appropriately based on the student’s cultural norm and upbringing, but the teachers who have different cultural and ethnic backgrounds than the students may inappropriately interpret or respond to the behavior. Therefore, it is important to study African American pre-service physical education teachers’ student teaching and field-based experiences with ethnically diverse adolescence (e.g., African American students), because they have the potential to develop a positive relationship between school support, teacher support, and academic achievement and influence student learning, motivation, and engagement in physical education. The purpose of this study was to describe and explain the experiences of African American physical education teacher education (PETE) candidates at secondary urban schools. The research design was explanatory multiple-case study situated in activity theory. Participants were seven African American PETE candidates. The qualitative data sources were interviews, weekly journal reflections, and e-portfolios. The results were (a) navigating power relationships between cooperative teachers and students, (b) a ‘shocking’ experience: Feeling under-prepared, and (c) encountered cultural normalcies and stereotypes in teaching physical education. PETE programs must better prepare teacher candidates for working in urban schools with greater cultural competence and higher self-efficacy.  相似文献   

8.
9.
Pseudoscience beliefs (e.g., astrology, ghosts or UFOs) are rife in American society. Most research examines creation/evolution among liberal arts majors, general public adults, or, infrequently, middle or high school science teachers. Thus, research truncates the range of ersatz science thinking and the samples it studies. We examined diverse beliefs, e.g., extraterrestrials, magic, Biblical creation, and evolution, among 540 female and 123 male future teachers, including 325 elementary education majors. We study how these cognitions related to education major and, because popular media often present pseudoscience “information”, student media use. Future elementary educators most often rejected evolution and endorsed “creationism” or Intelligent Design. Education majors held similar beliefs about astrology, UFO landings, or magic. Compared with other education students, elementary education majors watched less news or science television and read fewer popular science magazines. However, religious and media variables explained more variation in creation/evolution beliefs than education major. We discuss implications of our findings for elementary school science education and how teacher educators may be able to affect pseudoscience beliefs among their elementary education students.  相似文献   

10.
Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In addition, evolution can function as a pivotal link between concepts and highlight similarities in the complexity of biological concepts. However, empirical studies in many countries have for decades identified deficiencies in students’ scientific understanding of evolution mainly focusing on natural selection. Clearly, there are major obstacles to learning natural selection, and we argue that to overcome them, it is essential to address explicitly the general abstract concepts that underlie the biological processes, e.g., randomness or probability. Hence, we propose a two-dimensional framework for analyzing and structuring teaching of natural selection. The first—purely biological—dimension embraces the three main principles variation, heredity, and selection structured in nine key concepts that form the core idea of natural selection. The second dimension encompasses four so-called thresholds, i.e., general abstract and/or non-perceptual concepts: randomness, probability, spatial scales, and temporal scales. We claim that both of these dimensions must be continuously considered, in tandem, when teaching evolution in order to allow development of a meaningful understanding of the process. Further, we suggest that making the thresholds tangible with the aid of appropriate kinds of visualizations will facilitate grasping of the threshold concepts, and thus, help learners to overcome the difficulties in understanding the central theory of life.  相似文献   

11.
In this editorial we link the articles published in this Special Issue with the framework from Vision and Change and summarize findings from the editorial process of assembling the Special Issue.The authors of Vision and Change (American Association for the Advancement of Science [AAAS], 2011 ) issued the following call to action to biologists, physicists, chemists, and mathematicians:
To ensure that all students graduate with a basic level of scientific literacy and meet the challenges raised in Bio 2010: Transforming Undergraduate Education for Future Research Biologists (2003), Scientific Foundations for Future Physicians: Report of the AAMC-HHMI Committee (2009), A New Biology for the 21st Century (2009), and similar reports, biologists, physicists, chemists, and mathematicians need to look thoughtfully at ways they can introduce interdisciplinary approaches into their gateway courses. (AAAS, 2011 , p 54)
The articles that comprise this special issue of CBE—Life Sciences Education (LSE) take important steps toward responding to this call by describing teaching and learning at the intersection of biology and physics. Broadly defined, the work aims to encourage the development of genuine interdisciplinary understanding, or “the capacity to integrate knowledge and modes of thinking in two or more disciplines or established areas of expertise to produce a cognitive advancement … in ways that would have been impossible or unlikely through single disciplinary means” (Boix Mansilla and Duraisingh, 2007 , p. 219). Indeed, many of the most exciting recent breakthroughs in the life sciences have occurred at the intersection of these established disciplines. Physical laws help to predict, describe, and explain biological phenomena occurring at molecular to ecosystem levels, and the development of new physical tools helps to visualize these phenomena in new and informative ways. Thus, the Vision and Change report stresses the urgency for undergraduate biology and physics educators to develop, assess, and revise content materials, pedagogical strategies, and epistemological perspectives for encouraging student learning in interdisciplinary biology and physics classes.We received more than 50 abstracts in response to the call for this special issue, and we are pleased to publish 10 Articles, four Essays, and eight Features reflecting the state of educational transformation at the intersection of biology and physics. Several articles describe integration of physics into biology curriculum or biology into physics curriculum that goes beyond simple provision of examples from the respective disciplines (e.g., Batiza et al., Christensen et al., Svoboda Gouvea et al., O’Shea et al., Thompson et al., Breckler et al.). A number of articles address cross-cutting themes, such as problem solving (e.g., Hoskinson et al.) and energy (e.g., Cooper and Klymkowsky, Svoboda Gouvea et al.), the application of mathematical laws to biological phenomena (e.g., Redish and Cooke), epistemology (e.g., Watkins and Elby), and assessment as a powerful tool for driving curriculum change, in this case the integration of physics and biological thinking (e.g., Svoboda Gouvea et al., Momsen et al., Thompson et al.). Other articles reflect research crossing disciplinary boundaries to introduce research approaches (e.g., Watkins and Elby, Momsen et al.) or innovative curriculum models (e.g., Manthey and Brewe, Donovan et al., Thompson et al.) to help students develop reasoning strategies that move beyond traditional disciplinary boundaries. The Hillborn and Friedlander essay highlights potential impacts of cross-disciplinary collaboration in education on the revised Medical College Admission Test.We were pleased by the number of articles coauthored by physicists and biologists working in teams to examine and recommend new directions for the future of biology education. These teams brought a richness and depth of knowledge in both disciplines that made it possible to move instruction and research forward at the intersection of the disciplines. Together, these articles start to provide the evidence base for responding to the calls for interdisciplinary teaching and learning. Further, they provide opportunities to compare and contrast education and epistemologies in biology and physics, allowing for more informed integration of knowledge from these disciplines.  相似文献   

12.
13.
Spatial thinking, an important component of cognition, supports academic achievement and daily activities (e.g., learning science and math; using maps). Better spatial skills are correlated with more spatial play and more parental attention to spatial concepts. Tested here was whether informing mothers about spatial thinking and ways to encourage it would increase the spatial guidance they provide to their preschool children (= 41; M = 5.23 years) during dyadic block play. Mothers given such instructions indeed produced more spatial language and spatial guidance than mothers asked to play as usual. In instructed dyads, children also used more spatial language; both mothers and children engaged in less pretend play. Findings offer support for designing interventions to encourage parents to foster their children's spatial skills.  相似文献   

14.
This article presents a critical review and analysis of key studies that have been done in science education and other areas on the effects and effectiveness of using diagrams, graphs, photographs, illustrations, and concept maps as adjunct visual aids in the learning of scientific-technical content. It also summarizes and reviews those studies that have students draw diagrams, graphs, maps, and charts to express their understandings of the concepts and relationships that are present in the text they read or/and empirical data provided (i.e., student-generated adjunct visual productions). In general, the research and theory on instructional aids is fragmented and somewhat unsystematic with several flaws and a number of key uncontrolled variables, which actually suppress and mask effects in the studies that have been done. The findings of these studies are compared to relevant literature and empirical research and findings in the areas of cognitive psychology, computer science, neuroscience, and artificial intelligence that help to clarify many of the inconsistencies, contradictions, and lack of effects found for visual (e.g., diagrams and graphs) instructional aids in the science education literature currently and in the past 20 years. A model and a set of criteria and goals for improving research in this area is then described, as visuals are a first step in the process of learning formal (scientific) models, which are most often visually represented. Understanding how students learn formal models is one the outstanding research challenges in the next 20 years, both within and outside of science education.  相似文献   

15.
This forum article contributes to the understanding of how science teachers’ identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on ‘reform-minded’ science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers’ perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing “new pedagogy” in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers’ implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an “old pedagogy” in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called “new pedagogy” is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a “new pedagogy” and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.  相似文献   

16.
While the purposes of design and science are often different, they share some key practices and processes. Design-based science learning, which combines the processes of engineering design with scientific inquiry, is one attempt to engage students in scientific reasoning via solving practical problems. Although research suggests that engaging students in design-based science learning can be effective for learning both science process and content, more research is needed to understand how to overcome what Vattam and Kolodner (Pragmatics and Cognition 16:406–437, 2008) called “the design–science gap.” This study, therefore, takes a first step at systematically delving into this issue of bridging the design–science gap by examining the problem-solving strategies that students are using when they solve a prototypical design task. Videotaped performance assessments of high and low performing teams were analyzed in depth. Results suggest that students use both science reasoning strategies (e.g., control of variables) and design–focused strategies (e.g., adaptive growth). However, the strategies commonly associated with success in science (e.g., control of variables) did not necessarily lead to success in design. In addition, while both science reasoning strategies and design–focused strategies led to content learning, the content learned was different.  相似文献   

17.
In view of the research on education—and subject-related education in particular—that has been conducted in recent years, it would seem useful to describe the current state and future trends of research on science teaching and learning. In the present article, research findings are described, the deficits of science education are analyzed, and medium- and long-term research goals are specified from the perspective of an interdisciplinary cooperative effort between specialists in the fields of empirical educational research; the psychology of learning and instruction; and biology, chemistry, and physics education. Revised and supplemented version of Fischer, H. E., Klemm, K., Leutner, D., Sumfleth, E., Tiemann, R., and Wirth, J. (2003). Naturwissenschaftsdidaktische Lehr-Lernforschung: Defizite und Desiderata [Natural science-didactical learning research: Deficits and desiderata]. Zeitschrift für Didaktik der Naturwissenschaften, 9, 179–208.  相似文献   

18.
The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education’s most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.  相似文献   

19.
近年来,计算机模型的广泛运用是国际科学教育的一个重要趋势,相关研究十分繁荣。文章阐述了国外科学教育中计算机模型若干研究领域的新进展,主要涉及基于计算机模型的学习研究、教学研究、评价研究以及教师研究等方面,在此基础上提出对我国相关研究的启示。  相似文献   

20.
Bildung is a complex educational concept that emerged in Germany in the mid eighteenth century. Especially in Germany and Scandinavia conceptions of Bildung became the general philosophical framework to guide both formal and informal education. Bildung concerns the whole range of education from setting educational objectives in general towards its particular operation in different school subjects, among them science education. In more recent years, the concept of Bildung has slowly begun to be used in the international science and environmental education literature. This paper presents a systematic analysis of the international literature concerning the use of the concept of Bildung, with a view on its meaning in and for science education. At least five versions based on or closely connected to the tradition of Bildung can be identified: (a) Von Humboldt’s classical Bildung, (b) Anglo-American liberal education, (c) Scandinavian folk-Bildung, (d) democratic education, and (e) critical-hermeneutic Bildung. These different understandings of Bildung are discussed in relation to their historical roots, educational theory, critique, and their relation to philosophies of science education, such as different visions of scientific literacy. Based on critical-hermeneutic Bildung, the paper theoretically develops views of critical-reflexive Bildung as an educational metatheory. It is connected to ideas of transformative learning, sustainability education and a Vision III of scientific literacy. Finally, some implications of critical-reflexive Bildung for teaching and learning are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号