首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
在初中物理教学中,计算题是考察学生能力不可缺少的内容.计算题有利于培养学生对物理概念的理解应用,对物理规律的应用,有利于培养学生分析问题、解决问题的能力.然而教学实践中发现,物理教学中解题教学一直存在很大问题,没有收到满意的效果.如何提高学生解题的能力呢?  相似文献   

2.
物理是高中课程中重要的基础科目,也是高考的必考科目,所占的分数比例很重,物理成绩的好坏直接决定了高考分数的高低.提高物理能力有助于学生提高物理分数,物理能力主要包括物理思维能力、审题能力、分析问题和解题的能力等等,其中解题能力是高中物理的关键点.高考的物理题量大、难度大,这就要求学生有较高的解题能力,本文结合实际例题,分析了物理解题中存在的问题,提出培养解题能力的策略.  相似文献   

3.
李敬 《学周刊C版》2014,(5):78-79
物理是一门特殊的学科.能够有效培养学生的分析能力、思考能力和解决问题的能力。物理学科在初中升学考试中占有较大的比例,所以,物理教学在初中教学中占据着重要的地位。但是.如何能够使学生在初中物理教学中更有效地进行学习.是一个复杂的问题。本文结合笔者多年的物理教学经验.针对物理教学中常见的问题.提出了初中物理教学中提高学生学习有效性的几点建议。  相似文献   

4.
余志卫 《物理教师》2009,30(10):60-60
素质教育的主要任务就是培养学生的各种能力,在物理学科中各种能力具体体现为理解能力,推理、论证能力,分析、综合能力,应用数学方法解决物理问题的能力和实验能力.而思维能力正是这些能力的最集中体现.因此培养学生的思维能力就成为物理教育工作者的一项重要任务.  相似文献   

5.
知识是能力的基础,能力是知识的体现,而高考把对能力的考核放在了首位.物理学科内容丰富,物理问题干变万化,解题方法灵活多样.学生的能力主要是通过分析和求解物理问题的正确性、灵活性和技巧性表现出来的.通常学生在遇到较复杂的物理问题时,往往受思维定势的影响,思路狭窄、方法单一,甚至半途而废、无功而返.因此,引导学生从多角度、多方面分析思考问题,灵活地转换思维方法,寻找最佳的解题思路,对培养学生综合处理物理问题的能力是很有必要的.一、由部分到整体的转换当物理问题涉及多个物体或多个过程时,通过对变化中的物…  相似文献   

6.
魏俊枭  张洁 《物理教师》2010,31(8):60-61
在高中物理中,无论是在高考还是物理竞赛中,都要求学生具有应用数学知识处理物理问题的能力.也就是要求学生能够根据具体问题列出物理量之间的关系式,进行推导和求解,必要时还要能运用几何图形、函数图像进行表达、分析物理问题.在26届物理竞赛初赛一试中第13题就对学生的这一能力提出了较高的要求.笔者以该题为例谈谈自己的一点想法.  相似文献   

7.
张晶 《学周刊C版》2014,(8):20-20
根据物理学的特点.中学物理教学主要应发展学生的科学活动能力.教师要指导学生学好物理.必须遵循物理学的科学方法,帮助他们掌握学习物理的方法.狠抓实践应用环节.发展学生的科学活动能力就应着重在分析与解决实际问题的能力方面。  相似文献   

8.
骆君峰 《学周刊C版》2011,(11):126-126
在展示物理现象和导出物理概念及发现物理规律时.演示实验有其他教学方式不可替代的作用。由于受应试教育的影响,中学物理实验教学一直处于“讲起来重要.教起来次要.考起来不要”的状态.近年来高考实验题.从考查简单的实验知识.转向考查学生的实验能力和综合分析能力.考查学生对实验的思想、原理、方法的理解。作为一名物理教师.我们应想方设法在课堂上为学生展现出丰富多彩的物理现象和物理情景.从而提高学生发现问题、分析问题和解决问题的能力.从而提高课堂教学有效性.  相似文献   

9.
1 创新能力和实践能力是中学生应具备的物理能力 新课标要求中学物理教师应加大学生能力的培养.要求学生必备的能力主要有:思维能力、分析问题和解决问题的能力、创新能力和实践能力、应用数学工具解决物理问题的能力等.这些能力紧密相关,相辅相成.创新能力和实践能力的培养可以极大地促进其他能力的形成,反过来,学生的思维过程,严密的推理过程也是创新和实践的过程.  相似文献   

10.
提高学生分析和解决问题的能力,是物理教学的目标之一.解答物理习题的过程.就是培养和提高学生分析和解决问题能力的过程.要注意帮助学生养成良好的分析问题的习惯和正确的方法.有些物理问题各物理量间的空间关系,比较复杂,有些问题则是物理过程比较复杂,对这两类问题,常常可以通过画草图的方法,把关键之处分析清楚,从而找到解答问题的突破口.我们把这种通过画草图理解题意、弄清物理内容的分析方法简称为图示法,下面通过几个典型例题说明图示法在分析和解决物理问题中的作用。  相似文献   

11.
Recently, the importance of an everyday context in physics learning, teaching, and problem‐solving has been emphasized. However, do students or physics educators really want to learn or teach physics problem‐solving in an everyday context? Are there not any obstructive factors to be considered in solving the everyday context physics problems? To obtain the answer to these questions, 93 high school students, 36 physics teachers, and nine university physics educators participated in this study. Using two types of physics problems—everyday contextual problems (E‐problems) and decontextualized problems (D‐problems)—it was found that even though there was no difference in the actual performance between E‐problems and D‐problems, subjects predicted that E‐problems were more difficult to solve. Subjects preferred E‐problems on a school physics test because they thought E‐problems were better problems. Based on the observations of students' problem‐solving processes and interviews with them, six factors were identified that could impede the successful solution of E‐problems. We also found that many physics teachers agreed that students should be able to cope with those factors; however, teachers' perceptions regarding the need for teaching those factors were low. Therefore, we suggested teacher reform through in‐service training courses to enhance skills for teaching problem‐solving in an everyday context.  相似文献   

12.
目前,高中教学中对高考物理考试能力目标存在着不同的认识。应该从高考命题的角度对此进行澄清。高考物理科所测试的能力目标,必须立足在高中物理课程标准规定的,基本知识与基本技能的基础上,考查考生运用这些基本知识解决问题的能力,脱离了物理学科的基础知识与基本技能进行的能力测试,对高考而言是没有效度的。  相似文献   

13.
问题情境及创设问题情境在探究教学中具有重要意义,物理课堂中创设问题情境的基本策略即:创设的问题情境要新颖、生动;创设的问题情境要能激发学生思维,使学生产生学习动机;创设的问题情境要考虑学生解决的可能性。  相似文献   

14.
Secondary 5 students from four schools in Hong Kong were required to classify 18 paper and pencil physics problems in terms of whether the problems contain necessary and sufficient, missing or irrelevant information for their solution. Students' ability to denote missing information correlated rather highly with the solution rates of the problems. In another test, students were asked to classify whether the problems in each of six pairs were similar to or different from each other according to students' self-determined criteria. Students who used a deep structure (i.e. used the underlying physics principles) to classify the problems have significantly higher scores in detecting missing and irrelevant information and in the solution rates than those who used surface structure or features for classification. It is argued that a student who is able to identify what information is sufficient, missing or irrelevant for solving a problem understands the problem structure and so is better able to solve it. Such a student is likely to adopt a deep structure in categorizing physics problems. This latter result corroborates with the findings of the expert-novice research paradigm. Specializations: physics education, alternative conceptions of science, computer-assisted learning, problem solving.  相似文献   

15.
问题表征与学科问题解决的研究现状及启示   总被引:2,自引:0,他引:2  
问题表征的过程是将外部刺激转化成内部的心理符号,从而有助于问题解决。学科问题表征体现出明显的层次性和动态性。目前,学科问题解决主要关注问题表征的影响因素、问题表征的方式与策略的关系以及表征的发展性研究等几方面。在教学中,要重视专门知识的作用,启发学生运用多样化的表征方式以促进学生对问题的理解与解决。  相似文献   

16.
利用自制的中学生物理问题解决能力测验试题,从力学问题、运动学问题、图像问题、实验问题、简答题方面,对138名高中生的物理问题解决能力进行了调查,发现学生解决物理问题时,在态度倾向、问题表征能力、识别和分析问题能力、运用数学解决物理问题能力、知识迁移能力、检查与反思能力方面存在各种问题,并分析了问题存在的原因。  相似文献   

17.
在中学物理的教学过程中,既要有意识、有计划地引导、训练学生运用数学工具解决物理问题,又要使学生充分认识到数理结合问题的广泛性和普遍性,同时,还要注重运用数学工具解决物理问题的特殊性和局限性,从而培养学生的探索创新能力。  相似文献   

18.
The research issue in this study is how to structure collaborative learning so that it improves solving physics problems more than individual learning. Structured collaborative learning has been compared with individual learning environments with Schoenfeld’s problem‐solving episodes. Students took a pre‐test and a post‐test and had the opportunity to solve six physics problems. Ninety‐nine students from a secondary school in Shanghai participated in the study. Students who learnt to solve problems in collaboration and students who learnt to solve problems individually with hints improved their problem‐solving skills compared with those who learnt to solve the problems individually without hints. However, it was hard to discern an extra effect for students working collaboratively with hints—although we observed these students working in a more structured way than those in the other groups. We discuss ways to further investigate effective collaborative processes for solving physics problems.  相似文献   

19.
20.
Hudson and Rottman (1981) established that mathematics ability is probably a secondary factor influencing dropout from college physics courses. Other factors remain to be found for predicting who will drop out or at least have difficulty with the course. When mathematics ability is coupled with general indicators of performance (total GPA and ACT natural science), prediction of performance for those who complete the course is substantially improved. Moreover, discriminant analyses reveal who will have at least some difficulty, but not who will drop out. The problem of isolating specific weaknesses of students who have difficulty persists. Physics achievement appears to depend on mathematics ability only to the extent that students possess the ability to utilize mathematics knowledge for solving physics problems. Identification of the specific aspects of this ability as well as the specific deficiencies leading to dropout should be the object of future research. For the present, interviews might be more revealing than group testing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号