首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.解法研究 分析 本题考查导数的应用,第(1)问用导数研究单调性和极值,多数学生能解决,第(2)问用导数研究不等式(证明不等式恒成立),看起来很平常,实际上背景丰富,有一定难度和区分度,也有很大的研究空间,本文重点研究第(2)问.  相似文献   

2.
第1点导数与函数()必做1已知函数f(x)=eax·(a/x+a+a),其中a≥-1.(1)求f(x)的单调递减区间;(2)若存在x1>0,x2<0,使得f(x12),求a的取值范围.牛刀小试破解思路第(1)问求出导数后,分a=-1,-10求出单调递减区间.第(2)问注意理解条件是存在x1>0,x2<0,使得f(x12),可以直接论证或者构造反例求解.  相似文献   

3.
题目(2013年新课标理科卷第21题)已知函数f(x)=ex-ln(x+m)(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.此题是一道利用函数、导数、不等式知识研究新问题能力的压轴题.  相似文献   

4.
借力函数的构造巧证数列不等式例1已知函数f(x)=a/(x+2)(x∈R且x≠-2,a≠0).(1)函数y=f(x)的图像是否是中心对称图形?如果是,求出其对称中心,并给予证明;如果不是,  相似文献   

5.
点评 本题是2013年高考甘肃卷理科最后一题,是压轴题,考查的是导数的应用,第1问用导数研究单调性和极值,多数学生能够解决,第2问用导数研究不等式(证明不等式恒成立),看起来很平常,实际上却背景丰富,有一定难度和区分度,也有很大的研究空间.  相似文献   

6.
2016年云南省某市高中毕业生第一次教学质量检测理科数学第21题为: 题目 已知函数f(x) =2ln x-ax+a(a∈R). (Ⅰ)讨论f(x)的单调性; (Ⅱ)若(V)x∈(0,+∞),f(x)≤0,证明:当0<x1 <x2时, f(x2)-f(x1)/x2-x1<2(1/x1-1). 这是一道构思精巧的函数与不等式的综合题,着重考察导数在研究函数的性质以及证明函数不等式中的综合运用,试题呈现起点低、落点高,知识综合性强,对考生能力要求高的特点.考后分析知试题的第(Ⅱ)问得分率非常低,可见该题实属不易.由此引发笔者对该问题解法分析和背景溯源以及由此引出的两类高考题解法探究的一些思考.  相似文献   

7.
<正>题目已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a的值;(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.本题主要考查导数的计算、导数的几何意义以及曲线交点个数的判断即零点问题,同时考查学生的计算能力、推理论证能力以及运用有关知识分析问题和解决问题的能力.利用导数和函数单调性之间的关系是解决本题的关键.第(1)问较为基础,  相似文献   

8.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

9.
题目(武汉市四月研究题第21题)已知函数f(x)=xlnx/x-1-21n(1+√x).(1)求函数f(x)的定义域;(2)求函数f(x)的单调区间;(3)问是否存在实数a,使得不等式f(x)〉a恒成立,若存在,求实数a的取值范围,否则说明理由.  相似文献   

10.
笔者发现,函数y=f(x)在区间D上单调递增,则有x1,x2∈D时,(f(x1)-f(x2))(x1-x2)≥0,利用这个结论可以操作简便地证明字母变换具有对称性的一类不等式,下面略举几例.  相似文献   

11.
最近,在北师大版教材《选修2.2》第三章导数应用的教学中,有两处颇具争议的知识点,会误导学生.本文展现出来,以期加以修正. 误导一 极值点一定是导数为0的点 教材第61页归纳的求极值点的步骤:“一般情况下,我们可以通过如下步骤求出函数f(x)的极值点,首先求导,其次解方程f(x0)=0,然后检验x0,左右导数符号来判断x0是否为函数极值点”,从教材归纳求函数极值点的步骤可看出,“函数的极值点一定是导数为0的点!”  相似文献   

12.
<正>一、题目呈现(2022年山东数学模拟试题)已知函数f(x)=aex-1-lnx+lna,(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的范围.二、总体分析本题第(1)问考查导数的几何意义,属于常规题.第(2)问则是利用导数研究不等式恒成立问题,求参数的范围.此问可以多视角解答,涉及隐零点、同构法、切线放缩、分类讨论、反函数法等多种策略.特分享于此,以飨读者.  相似文献   

13.
<正>一、试题再现已知函数f(x)=ex/x-ln x+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.本题是2022年全国甲卷导数压轴题.第(1)问已知不等式求参数的取值范围,难度中等;第(2)问考查导数的应用,属于极值点偏移问题,难度偏难.  相似文献   

14.
一、试题呈现题目 (2012年高考数学江苏卷第18题)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+ bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g'(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.二、试题的分析及数形结合解法本题的第(1)、(2)问考查利用导数求解函数的极值,解答比较简单,这里我们不作讨论.第(3)问考查复合函数(实际上是迭代函数)的零点个数问题.对于第(3)问,命题组提供的参考答案是利用换元法,根据函数零点存在定理,判断函数y=h(x)的零点个数,整个解法缺乏直观,考生不容易想到,运算量也比较大.下面我们借助数形结合的思想对第(3)问进行解答,并依此解法把第(3)问的结论进行推广.  相似文献   

15.
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,其中活跃着一类与"ex"和"ln x"有关的函数不等式.本文通过对两个重要函数不等式及其变式在近几年高考压轴题中的应用为例进行探究,以供大家参考.一、两个重要函数不等式的证明结论 1若x∈R,则ex≥x+1(当且仅当x=0等号成立).证明构造函数f(x)=ex-x-1,  相似文献   

16.
2008高考山东卷第21题第二问是这样的: 已知函数f(x)=1/(1-x)^n+ln(x-1),证明:对任意正整数n,当x≥2时,有f(x)≤x-1.  相似文献   

17.
题目:已知函数f(x)满足f(x)=f’(1)ex-1-f(0)x+1/2x2.(1)求f(x)的解析式及单调区间;(2)若f(x)≥1/2x2+ax+b,求(a+1)b的最大值.此题为2012年全国高考数学新课标卷理科第21题,是一道利用函数、导数、不等式知识解决新问题的压轴题.第(1)小题较基础,相  相似文献   

18.
<正>2023年新高考全国I卷第22题是一道解析几何题,考查了解析几何中的轨迹方程、抛物线、弦长公式、两点之间的的距离公式,以及函数中的导数、不等式证明等知识,有很强的综合性.本题第(1)问属常规求轨迹方程问题,比较简单;第(2)问对思维能力及计算能力要求很高,属于难题.本文从不同角度探究此题的解法,与大家共同分享.  相似文献   

19.
用导数证明不等式,是证明不等式的一种主要方法。它既不能完全代替其他方法,但对证明不等式具有独特的作用。有些不等式的证明题,用初等数学方法很难证明,用导数证明却很容易。而且用导数证明不等式的规律性较强,一般要先设辅助函数,并求此函数的导数。但用导数证明不等式,设辅助函数要有一定的技巧,证明方法也常因题而异。本文分类举例说明用导数证明不等式的方法。 (一) 用微分中值定理证明例1 求证|arcsinb-arcsina|≥|b-a|。证明若a=b,显然成立,若a≠b,则设f(x)=arcsinx,不妨设-1≤a相似文献   

20.
一、考题展示题目(2020年新高考山东卷21题)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f(x)在点1,f(1)处切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求实数a的取值范围.答案:(1)2[]e-1;(2)a≥1.点评:本题是2020年新高考山东卷21题,第(1)问考查导数的几何意义,学生很容易上手,第(2)问考查用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,有一定难度和区分度.本题结构简洁、表达流畅、静中有动、平中见奇、入口较宽,解法多样,有内涵、有思想、有新意,令人回味无穷,极具教学价值和研究价值.本文重点研究第(2)问.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号