首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The aim of this study was to test the hypothesis that sprint performance (time over a given distance) would be affected by track compliance, with better performances on the more compliant surface. Ten sprinters participated in the study. The athletes performed maximal sprints (60 m) on three different track configurations (hard, 5500 kN · m?1; soft, 2200 kN · m?1; spring, 550 kN · m?1). A 60-m single-lane running surface was constructed. Plywood boards (1.2 cm thick) were placed on a 60 × 0.6 m wooden chipboard frame serving as the base surface. All participants ran two times on each track configuration in a randomized order. The athletes' kinematics were recorded using the Vicon 624 system with 12 cameras operating at 250 Hz. Four Kistler force plates (1250 Hz) were used to record ground reaction forces. Sprint performance (time over 60 m) was unaffected by the different track compliances (P = 0.57). In addition, there was no effect of track (P > 0.05) on the sprinting kinematics and kinetics of the ankle or knee joint. The hypothesis that sprint performance is affected by track compliance can be rejected because the sprinters recorded similar performances while sprinting over 60 m on all three track configurations. We conclude that: (1) the possible deformation of the track while sprinting is minor enough not to cause a specific adjustment in the leg mechanics affecting the effectiveness of the stretch – shortening cycle of the sprinters; and (2) the energy exchange between sprinters and tracks has only a marginal effect on sprint performance due to its small magnitude. More research on tracks with lower stiffness is required.  相似文献   

2.
ABSTRACT

As the effect of performance level on sprinting mechanics has not been fully studied, we examined mechanical differences at maximal running speed (MRS) over a straight-line 35 m sprint amongst sprinters of different performance levels. Fifty male track and field sprinters, divided in Slow, Medium and Fast groups (MRS: 7.67 ± 0.27 m?s?1, 8.44 ± 0.22 m?s?1, and 9.37 ± 0.41 m?s?1, respectively) were tested. A high-speed camera (250 Hz) recorded a full stride in the sagittal plane at 30–35 m. MRS was higher (p < 0.05) in Fast vs. Medium (+11.0%) and Slow (+22.1%) as well as in Medium vs. Slow (+10.0%). Twelve, eight and seven out of 21 variables significantly distinguished Fast from Slow, Fast from Medium and Medium from Slow sprinters, respectively. Propulsive phase was signi?cantly shorter in Fast vs. Medium (?17.5%) and Slow (?29.4%) as well as in Medium vs. Slow (?14.4%). Fast sprinters had significantly higher vertical and leg stiffness values than Medium (+44.1% and +18.1%, respectively) and Slow (+25.4% and +22.0%, respectively). MRS at 30–35 m increased with performance level during a 35-m sprint and was achieved through shorter contact time, longer step length, faster step rate, and higher vertical and leg stiffness.  相似文献   

3.
Selected kinematic variables of the foot segments and the metatarsophalangeal (MTP) joint were investigated in relation to sprinting performance among 100 m sprint athletes at the 2000 Summer Olympic Games. It was hypothesized that the kinematics of the MTP joint, and forefoot and rearfoot segments, are related to sprint performance for both male and female athletes. Kinematic sagittal plane data were collected using two digital video cameras recording at 120 fields per second. It was determined that faster male sprinters experienced higher maximal rates of MTP extension, and faster female sprinters touch down with higher posterior sole angles and take off with lower posterior sole angles.  相似文献   

4.
Correspondence     
Abstract

Selected kinematic variables of the foot segments and the metatarsophalangeal (MTP) joint were investigated in relation to sprinting performance among 100 m sprint athletes at the 2000 Summer Olympic Games. It was hypothesized that the kinematics of the MTP joint, and forefoot and rearfoot segments, are related to sprint performance for both male and female athletes. Kinematic sagittal plane data were collected using two digital video cameras recording at 120 fields per second. It was determined that faster male sprinters experienced higher maximal rates of MTP extension, and faster female sprinters touch down with higher posterior sole angles and take off with lower posterior sole angles.  相似文献   

5.
The initial steps of a sprint are important in team sports, such as rugby, where there is an inherent requirement to maximally accelerate over short distances. Current understanding of sprint acceleration technique is primarily based on data from track and field sprinters, although whether this information is transferable to athletes such as rugby players is unclear, due to differing ecological constraints. Sagittal plane video data were collected (240?Hz) and manually digitised to calculate the kinematics of professional rugby forwards (n?=?15) and backs (n?=?15), and sprinters (n?=?18; 100?m personal best range?=?9.96–11.33?s) during the first three steps of three maximal sprint accelerations. Using a between-group research design, differences between groups were determined using magnitude-based inferences, and within-group relationships between technique variables and initial sprint acceleration performance were established using correlation. Substantial between-group differences were observed in multiple variables. Only one variable, toe-off distance, differed between groups (d?=??0.42 to ?2.62) and also demonstrated meaningful relationships with sprint performance within all three groups (r?=??0.44 to ?0.58), whereby a stance foot position more posterior relative to the centre of mass at toe-off was associated with better sprint performance. While toe-off distance appears to be an important technical feature for sprint acceleration performance in both sprinters and rugby players, caution should be applied to the direct transfer of other kinematic information from sprinters to inform the technical development of acceleration in team sports athletes.  相似文献   

6.
This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.  相似文献   

7.
Muscle power patterns in the mid-acceleration phase of sprinting   总被引:3,自引:2,他引:1  
To assess the role of the lower limb joints in generating velocity in the mid-acceleration phase of sprinting, muscle power patterns of the hip, knee and ankle were determined. Six male sprinters with a mean 100 m time of 10.75 s performed repeated maximal sprints along a 35 m indoor track. A complete stride across a force platform, positioned at approximately 14 m into the sprint, was video-recorded for analysis. Smoothed coordinate data were obtained from manual digitization of (50 Hz) video images and were then interpolated to match the sampling rate of the recorded ground reaction force (1000 Hz). The moment at each joint was then calculated using inverse dynamics and multiplied by the angular velocity to determine the muscle power. The results showed a proximal-to-distal timing in the generation of peak extensor power during stance at the hip, the knee and then the ankle, with the plantar flexors producing the greatest peak power. Apart from a moderate power generation peak towards toe-off, knee power was negligible despite a large extensor moment throughout stance. The role of the knee thus appears to be one of maintaining the centre of mass height and enabling the power generated at the hip to be transferred to the ankle.  相似文献   

8.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.  相似文献   

9.
This study aimed to investigate the effects of forward trunk lean on hamstring muscle kinematics during sprinting. Eight male sprinters performed maximal-effort sprints in two trunk positions: forward lean and upright. A three-dimensional musculoskeletal model was used to compute the musculotendon lengths and velocity of the biceps femoris long head, semitendinosus, and semimembranosus muscles during the sprinting gait cycle. The musculotendon lengths of all the three hamstring muscles at foot strike and toe-off were significantly greater during the forward trunk lean sprint than during the upright trunk sprint. In addition, a positive peak musculotendon lengthening velocity was observed in the biceps femoris long head and semimembranosus muscles during the late stance phase, and musculotendon lengths at that instant were significantly greater during the forward trunk lean sprint than during the upright trunk sprint. The present study provides significant evidence that a potential for hamstring muscle strain injury involving forward trunk lean sprinting would exist during the stance phase. The results also indicate that the biceps femoris long head and semimembranosus muscles are stretched during forward trunk lean sprinting while contracting eccentrically in the late stance phase; thus, the elongation load on these muscles could be increased.  相似文献   

10.
In this study, we compared sprint kinematics of sled towing and vest sprinting with the same relative loads. Twenty athletes performed 30-m sprints in three different conditions: (a) un-resisted, (b) sled towing, and (c) vest sprinting. During sled towing and vest sprinting, external loads of 15% and 20% of body mass were used. Sprint times were recorded over 10 and 30 m. Sagittal-plane high-speed video data were recorded at 5, 15, and 25 m from the start. Relative to the un-resisted condition, sprint time increased (7.5 to 19.8%) in both resisted conditions, resulting mainly from decreased step length ( ? 5.2 to ? 16.5%) with small decreases in step frequency ( ? 2.7 to ? 6.1%). Sled towing increased stance phase duration (14.7 to 26.0%), trunk angle (12.5 to 71.5%), and knee angle (10.3 to 22.7%), and decreased swing phase duration ( ? 4.8 to ? 15.2%) relative to the un-resisted condition. Vest sprinting increased stance phase duration (12.8 to 24.5%) and decreased swing phase duration ( ? 8.4 to ? 14.4%) and trunk angle ( ? 1.7 to ? 13.0%). There were significant differences between the two resisted conditions in trunk, thigh, and knee angles. We conclude that sled towing and vest sprinting have different effects on some kinematics and hence change the overload experienced by muscle groups.  相似文献   

11.
400m 跑的供能特点及其训练   总被引:1,自引:0,他引:1  
400m在短跑项目中,是一个较难驾驭的项目,一直是人们研究的焦点之一。400m跑要求运动员既具备良好的速度,又要具备良好的速度耐力,要想找到其中的最佳契合点,让运动员在比赛中获得最好的成绩,教练员必须了解400跑的供能特点和供能方式,然后根据其特点有针对性地安排训练,才能收到理想的训练效果。  相似文献   

12.
ABSTRACT

This study investigated the role of reactive and eccentric strength in stiffness regulation during maximum velocity sprinting (Vmax) in team sport athletes compared with highly trained sprinters. Thirteen team sport athletes and eleven highly trained sprinters were recruited. Vmax was measured using radar, and stiffness regulation was inferred from modelled vertical and leg spring stiffness. Reactive strength (RSI) was determined from a 0.50 m drop jump, and an eccentric back squat was used to assess maximum isoinertial eccentric force. Trained sprinters attained a higher Vmax than team sport athletes, partly due to a briefer contact time and higher vertical stiffness. Trained sprinters exhibited a moderately higher RSI via the attainment of a briefer and more forceful ground contact phase, while RSI also demonstrated large to very large associations with vertical stiffness and Vmax, respectively. Isoinertial eccentric force was largely correlated with Vmax, but only moderately correlated with vertical stiffness. Reactive and eccentric strength contribute to the ability to regulate leg spring stiffness at Vmax, and subsequently, the attainment of faster sprinting speeds in highly trained sprinters versus team sport athletes. However, stiffness regulation appears to be a task-specific neuromuscular skill, reinforcing the importance of specificity in the development of sprint performance.  相似文献   

13.
In the current study, we quantified biological movement variability on the start and early acceleration phase of sprinting. Ten male athletes aged 17-23 years (100-m personal best: 10.87 +/- 0.36s) performed four 10-m sprints. Two 250-Hz cameras recorded the sagittal plane action to obtain the two-dimensional kinematics of the block start and initial strides from subsequent manually digitized APAS motion analysis. Infra-red timing lights (80Hz) were used to measure the 10-m sprinting times. The coefficient of variation (CV%) calculation was adjusted to separate biological movement variability (BCV%) from estimates of variability induced by technological error (SEM%) for each individual sprinter and measure. Pearson's product-moment correlation and linear regression analysis were used to establish relationships between measures of BCV% and 10-m sprint start performance (best 10-m time) or 10-m sprint start performance consistency (10-m time BCV%) using SPSS version 12.0. Measurement error markedly inflated traditional measures of movement variability (CV%) by up to 72%. Variability in task outcome measures was considerably lower than that observed in joint rotation velocities. Consistent generation of high horizontal velocity out of the blocks led to more stable and faster starting strides.  相似文献   

14.
The purposes of this investigation were to determine if increasing the bending stiffness of sprint shoes increases sprinting performance and to determine whether simple anthropometric factors can be used to predict shoe bending stiffness for optimal performance. Thirty-four athletes were tested using four different shoe conditions--a standard condition consisting of their currently used footwear and three conditions where the bending stiffness was increased systematically. The sprinters performed maximal effort 40 m sprints and their sprint times were recorded from 20 to 40 m. On average, increasing the shoe bending stiffness increased sprint performance. The stiffness each athlete required for his or her maximal performance was subject specific but was not related to subject mass, height, shoe size or skill level. It is speculated that individual differences in the force-length and force-velocity relationships of the calf muscles may influence the appropriate shoe stiffness for each athlete to obtain their maximal performance.  相似文献   

15.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

16.
ABSTRACT

In this study, we aimed to clarify the characteristics of neuromuscular function, kinetics, and kinematics of the lower extremity during sprinting in track and field athletes with a history of strain injury. Ten male college sprinters with a history of unilateral hamstring injury performed maximum effort sprint on an athletic track. The electromyographic (EMG) activity of the long head of the biceps femoris (BFlh) and gluteus maximus (Gmax) muscles and three-dimensional kinematic data were recorded. Bilateral comparisons were performed for the EMG activities, pelvic anterior tilt angle, hip and knee joint angles and torques, and the musculotendon length of BFlh. The activity of BFlh in the previously injured limb was significantly lower than that in the uninjured limb during the late-swing phase of sprinting (p < 0.05). However, the EMG activity of Gmax was not significantly different between the previously injured and uninjured limbs. Furthermore, during the late-swing phase, a significantly more flexed knee angle (p < 0.05) and a decrease in BFlh muscle length (p < 0.05) were noted in the injured limb. It was concluded that previously injured hamstring muscles demonstrate functional deficits during the late swing phase of sprinting in comparison with the uninjured contralateral muscles.  相似文献   

17.
In the current study, we quantified biological movement variability on the start and early acceleration phase of sprinting. Ten male athletes aged 17–23 years (100-m personal best: 10.87 ± 0.36 s) performed four 10-m sprints. Two 250-Hz cameras recorded the sagittal plane action to obtain the two-dimensional kinematics of the block start and initial strides from subsequent manually digitized APAS motion analysis. Infra-red timing lights (80 Hz) were used to measure the 10-m sprinting times. The coefficient of variation (CV%) calculation was adjusted to separate biological movement variability (BCV%) from estimates of variability induced by technological error (SEM%) for each individual sprinter and measure. Pearson's product–moment correlation and linear regression analysis were used to establish relationships between measures of BCV% and 10-m sprint start performance (best 10-m time) or 10-m sprint start performance consistency (10-m time BCV%) using SPSS version 12.0. Measurement error markedly inflated traditional measures of movement variability (CV%) by up to 72%. Variability in task outcome measures was considerably lower than that observed in joint rotation velocities. Consistent generation of high horizontal velocity out of the blocks led to more stable and faster starting strides.  相似文献   

18.
Abstract

Cerebral palsy is known to generally limit range of motion and force producing capability during movement. It also limits sprint performance, but the exact mechanisms underpinning this are not well known. One elite male T36 multiple-Paralympic sprint medallist (T36) and 16 well-trained able-bodied (AB) sprinters each performed 5–6 maximal sprints from starting blocks. Whole-body kinematics (250 Hz) in the block phase and first two steps, and synchronised external forces (1,000 Hz) in the first stance phase after block exit were combined to quantify lower limb joint kinetics. Sprint performance (normalised average horizontal external power in the first stance after block exit) was lower in T36 compared to AB. T36 had lower extensor range of motion and peak extensor angular velocity at all lower limb joints in the first stance after block exit. Positive work produced at the knee and hip joints in the first stance was lower in T36 than AB, and the ratio of positive:negative ankle work produced was lower in T36 than AB. These novel results directly demonstrate the manner in which cerebral palsy limits performance in a competition-specific sprint acceleration movement, thereby improving understanding of the factors that may limit performance in elite sprinters with cerebral palsy.  相似文献   

19.
Abstract

The metatarsophalangeal joint (MPJ) is a significant absorber of energy in sprinting. This study examined the influence of MPJ axis choice and filter cut-off frequency on kinetic variables describing MPJ function during accelerated sprinting. Eight trained sprinters performed maximal sprints along a runway. Three-dimensional high-speed (1000 Hz) kinematic and kinetic data were collected at the 20 m point. Three axis definitions for the five MPJs were compared. MPJ moments, powers and energies were calculated using different filter cut-off frequencies. The more anatomically appropriate dual axis resulted in less energy absorbed at the MPJ compared to the oblique axis which also absorbed less energy compared to the perpendicular axis. Furthermore, a low cut-off frequency (8 Hz) substantially underestimated MPJ kinematics, kinetics and the energy absorbed at the joint and lowered the estimate of energy production during push-off. It is concluded that a better understanding of MPJ function during sprinting would be obtained by using an oblique or anatomically appropriate representation of the joint together with appropriate kinematic data sampling and filtering so that high frequency movement characteristics are retained.  相似文献   

20.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号