首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to analyse the significance of various biomechanical parameters in swim start performance for the grab and track start techniques. To do so, structural equation models were analysed, incorporating measurements for the take-off phase, flight phase and entry phase. Forty-six elite German swimmers (18 female and 28 male; age: 20.1 ± 4.2 yrs; PB (100 m Freestyle): 53.6 ± 2.9 s) participated in the study. Their swim start performance was examined within a 25-m sprint test. Structural equation modelling was conducted in separate models for the block time, flight time and water time and in a combined model for swim start time. Our main finding was that swim start time is predominantly related to water time and determined to a lesser extent by block time and flight time. We conclude that more emphasis should be given to the water immersion behaviour and the gliding phase when analysing swim start performance. Furthermore, significant differences were found between the grab start and track techniques as regards the biomechanical parameters representing the take-off phase and water phase.  相似文献   

2.
Task-specific auditory training can improve sensorimotor processing times of the auditory reaction time (RT). The majority of competitive swimmers do not conduct habitual start training with the electronic horn used to commence a race. We examined the effect of four week dive training interventions on RT and block time (BT) of 10 male adolescent swimmers (age 14.0 ± 1.4 years): dive training with auditory components (speaker and electronic horn) (n = 5) and dive training without auditory components (n = 5). Auditory stimulus dive training significantly reduced swimming start RT, compared with dive training without auditory components (p < 0.01), with a group mean RT reduction of 13 ± 9 ms. Four of the five swimmers that received auditory stimulus training showed medium to large effect size reductions in RT (d = 0.74; 1.32; 1.40; 1.81). No significant changes to swimmers’ BTs were evident in either dive training intervention. The adolescent swimmers’ results were compared against six male elite swimmers (age 19.8 ± 1.0 years). The elite swimmers had significantly shorter BTs (p < 0.05) but no significant difference in RTs. Auditory stimulus dive training should be explored further as a mechanism for improving swimming start performance in elite swimmers who have pre-established optimal BTs.  相似文献   

3.
In the present research, we examined the effect of the starting and turning performances on the subsequent swimming parameters by (1) comparing the starting and turning velocities with the swimming parameters on the emersion and mid-pool segments and (2) by relating the individual behaviour of swimmers during the start and turns with subsequent behaviour on each swimming lap. One hundred and twelve 100 m performances on the FINA 2013 World Swimming Championships were analysed by an image-processing system (InThePool 2.0®). At the point of the start emersion, the swimming parameters of the 100-m elite swimmers were substantially greater than the mid-pool parameters, except on the breaststroke races. On the other hand, no diminution in the swimming parameters was observed between the turn emersion and the mid-pool swimming, except on the butterfly and backstroke male races. Changes on the surface swimming kinematics were not generally related to the starting or turning parameters, although male swimmers who develop faster starts seem to achieve faster velocities at emersion. Race analysts should be aware of a transfer of momentum when swimmers emerge from underwater with implications on the subsequent swimming kinematics, especially for male swimmers who employ underwater undulatory techniques.  相似文献   

4.
The main objectives of the present research were (1) to examine the relationships between the distances travelled underwater during the start and turn segments with swimming race performance at the elite level and (2) to determine if the individualised-distance start and turn parameters affect the overall race performance. The race parameters of the 100 and 200?m events during 2013 World Championships were measured by an innovative image-processing system (InThePool® 2.0). Overall, 100?m race times were largely related to faster start velocities in men's breaststroke and freestyle events. Conversely, overall, 200?m race times were largely related to longer starting distances in the women's butterfly events, to longer turn distances in men's and women's backstroke and women's butterfly events and to shorter turn distances in women's freestyle events. Changes on the start or turn velocities could represent moderate time improvements in most of the 100?m events, whereas modifications on the start or turn distances (especially in the last turn) could provide elite swimmers with time improvements of practical importance on the 200?m events. The evaluation of races by individualised-distance parameters should be provided to elite swimmers in order to decide the most appropriate race segment configuration for each event.  相似文献   

5.
Biomechanical differences in double poling (DP) between sex and performance level were investigated in female and male cross-country skiers during a classical race (10/15 km). Skiers were divided into faster and slower on basis of race performance: females faster (n=20), females slower (n=20), males faster (n=20), and males slower (n=20). Based on video analysis while DP in a flat section of the track, joint and pole angles at pole plant (PP) and pole-off, cycle characteristics and the use and coordination pattern of heel-raise (raise of heels from the ground to have a higher body position at PP) were analysed. Faster females and males had 4.3% and 7.8% higher DP velocity than their slower counterparts (both P<0.001). Faster males had 6.5% longer cycles than slower males (P<0.001). Faster skiers stopped heel-raise later than slower skiers (females: 2.0±3.4% vs. ?1.0±3.5%, P<0.05; males: 3.9±2.4% vs. 0.8±3.2% of cycle time in relation to PP, P<0.001). At PP, faster skiers and male skiers had a smaller pole angle and greater ankle to hip and ankle to shoulder angle with respect to vertical, resulting in a more distinct forward body lean. However, the majority of the differences are likely due to higher DP velocity.  相似文献   

6.
The aim of this study was to compare three competitive swimming starts (grab, rear-weighted track, and front-weighted track). The starts were compared in terms of time and instantaneous horizontal velocity, both at take-off from the block and at 5 m from the wall. Twenty US college female swimmers performed three trials of each of the three randomly ordered starts. Swimmers left the block significantly sooner using the front-weighted track start (0.80 s) than the other two starts (both 0.87 s; P < 0.001). In the rear-weighted track start, however, the athletes left the blocks with significantly higher horizontal velocity than in the grab or front-weighted track start (3.99 vs. 3.87 and 3.90 m/s, respectively; each P < 0.001). By 5 m, the front-weighted track start maintained its time advantage over the grab start (2.19 vs. 2.24 s; P = 0.008) but not the rear-weighted track start (2.19 vs. 2.21 s; P = 0.336). However, the rear-weighted track start had a significant advantage over the front-weighted track start in terms of instantaneous horizontal velocity at 5 m (2.25 vs. 2.18 m/s; P = 0.009). Therefore, the rear-weighted track start had a better combination of time and velocity than the front-weighted track start. There was also a trend for the rear-weighted track start to have higher velocity at 5 m than the grab start, although this did not reach statistical significance (2.25 vs. 2.20 m/s; P = 0.042). Overall, these results favour the rear-weighted track start for female swimmers even though most of the athletes had little or no prior experience with it. Additional research is needed to determine whether males would respond similarly to females in these three different swimming starts.  相似文献   

7.
Athletes in the 3,000 m steeplechase track and field event negotiate unmovable hurdles and waterjumps. Ground reaction forces (GRF) in the steeplechase were quantified to elucidate injury risks / mechanisms and to inform coaches. Five male and five female steeplechasers participated. GRF were measured during treadmill running, and using specially mounted force platforms, during hurdle and waterjump takeoffs and landings at 5.54 m/s (males) or 5.00 m/s (females). Results are presented as: male mean ± SD / female mean ± SD. Initial and active peaks of vertical GRF during treadmill running were 2.04 ± 0.72 / 2.25 ± 0.28 BW and 3.11 ± 0.27 / 2.98 ± 0.24 BW. Compared to treadmill running, peak vertical forces were greater (p < 0.001) for: hurdle takeoff (initial: 4.25 ± 0.86 / 3.78 ± 0.60 BW, active: 3.82 ± 0.20 / 3.74 ± 0.32 BW), hurdle landing (active: 4.41 ± 1.13 / 4.21 ± 0.21 BW), waterjump takeoff (initial: 4.32 ± 0.67 / 4.56 ± 0.54 BW, active: 4.00 ± 0.24 / 3.83 ± 0.31 BW), and waterjump landing (initial: 3.45 ± 0.34 / #3.78 ± 0.32 BW, active:5.40 ± 0.78 / #6.23 ± 0.74 BW); (#) indicates not statistically compared (n = 2). Based on horizontal impulse, athletes decelerated during takeoff steps and accelerated during landing steps of both hurdling and waterjumps. Vertical GRF peaks and video indicated rearfoot strikes on the treadmill but midfoot strikes during hurdle and waterjump landings. Potentially injurious GRF occur during the steeplechase, particularly during waterjump landings (up to 7.0 BW).  相似文献   

8.
The aim of this study was to examine the importance of the change-over time in swimming relay races. Top-class international 4 x 100 m freestyle races were analysed across a 10-year period including three Olympic Games and five European and World Championships. A total of 220 swimmers (116 female, 104 male) were included in this study with an average participation of 1.7 ± 1.2 races. To consider such repeated measurements and other factors (e.g., ranking in the relay race, position in the relay team) linear mixed models for longitudinal data were used for the statistical evaluation. Our results showed significantly longer change-over times for male medallists (0.23 ± 0.08 s) than non-medallists (0.20 ± 0.09 s) which reflects a very likely effect (94.2%). Furthermore, there were significant differences in change-over times between female and male swimmers depending on the current race positions. In total, the influence of change-over time on the final performance in 4 x 100-m freestyle relay appears to be overrated in previous studies.  相似文献   

9.
Freestyle race pacing strategies (400 m) were compared between elite able-bodied swimmers and those with minimal physical (International Paralympic Committee S10 classification) and visual disabilities (International Paralympic Committee S13 classification). Data comprised 50-m lap splits and overall race times from 1176 400-m freestyle swims from World Championships, European Championships and Olympic/Paralympic Games between 2006 and 2012. Five pacing strategies were identified across groups (even, fast start, negative, parabolic and parabolic fast start), with negative and even strategies the most commonly adopted. The negative pacing strategy produced the fastest race times for all groups except for female S13 swimmers where an even strategy was most effective. Able-bodied groups swam faster than their S10 and S13 counterparts, with no differences between S10 and S13 groups. The results suggest adoption of multiple pacing strategies across groups, and even where impairments are considered minimal they are still associated with performance detriments in comparison to their able-bodied counterparts. The findings have implications for the planning and implementation of training related to pacing strategies to ensure optimal swimmer preparation for competition. Analogous performance levels in S10 and S13 swimmers also suggest a case for integrated competition of these classifications in 400-m freestyle swimming.  相似文献   

10.
The aims of this study were to describe muscular activation patterns and kinematic variables during the complete stroke cycle (SC) and the different phases of breaststroke swimming at submaximal and maximal efforts. Surface electromyography (sEMG) was collected from eight muscles in nine elite swimmers; five females (age 20.3 ± 5.4 years; Fédération Internationale de Natation [FINA] points 815 ± 160) and four males (27.7 ± 7.1 years; FINA points 879 ± 151). Underwater cameras were used for 3D kinematic analysis with automatic motion tracking. The participants swam 25 m of breaststroke at 60%, 80% and 100% effort and each SC was divided into three phases: knee extension, knee extended and knee flexion. With increasing effort, the swimmers decreased their SC distance and increased their velocity and stroke rate. A decrease during the different phases was found for duration during knee extended and knee flexion, distance during knee extended and knee angle at the beginning of knee extension with increasing effort. Velocity increased for all phases. The mean activation pattern remained similar across the different effort levels, but the muscles showed longer activation periods relative to the SC and increased integrated sEMG (except trapezius) with increasing effort. The muscle activation patterns, muscular participation and kinematics assessed in this study with elite breaststroke swimmers contribute to a better understanding of the stroke and what occurs at different effort levels. This could be used as a reference for optimising breaststroke training to improve performance.  相似文献   

11.
Abstract

The purpose of this study was to characterize changes and variability in test performance of swimmers within and between seasons over their elite competitive career. Forty elite swimmers (24 male, 16 female) performed a 7×200-m incremental swimming step test several times each 6-month season (10±5 tests, spanning 0.5–6.0?y). Mixed linear modeling provided estimates of percent change in the mean and individual responses (within-athlete variation as a coefficient of variation) for measures based on submaximal performance (fixed 4-mM lactate), maximal performance (the seventh step) and lean mass (from skinfolds and body mass). Submaximal and maximal swim speed increased within each season from pre to taper phase by ~2.2% for females and ~1.5% for males (95% confidence limits ±1.0%), with variable contributions from stroke rate and stroke length. Most of the gains in speed were lost in the off-season, leaving a net average annual improvement of ~1.0% for females and ~0.6% for males (±1.0%). For submaximal and maximal speed, individual variation between phases was ±2.2% and the typical measurement error was ±0.80%. Step test and anthropometric measures can be used to confidently monitor progressions in swimmers in an elite training program within and between seasons.  相似文献   

12.
Abstract

The aim of this study was to compare optimization and correction procedures for the determination of peak power output during friction-loaded cycle ergometry. Ten male and 10 female sports students each performed five 10-s sprints from a stationary start on a Monark 864 basket-loaded ergometer. Resistive loads of 5.0, 6.5, 8.0, 9.5, and 11.0% body weight were administered in a counterbalanced order, with a recovery period of 10 min between sprints. Peak power was greater and occurred earlier, with less work having been done before the attainment of peak power, when the data were corrected to account for the inertial and frictional characteristics of the ergometer. Corrected peak power was independent of resistive load (P > 0.05), whereas uncorrected peak power varied as a quadratic function of load (P < 0.001). For males and females, optimized peak power (971 ± 122 and 668 ± 37 W) was lower (P < 0.01) than either the highest (1074 ± 111 and 754 ± 56 W respectively) or the mean (1007 ± 125 and 701 ± 45 W respectively) of the five values for corrected peak power. Optimized and mean corrected peak power were highly correlated both in males (r = 0.97, P < 0.001) and females (r = 0.96, P < 0.001). The difference between optimized and mean corrected peak power was 37 ± 30 W in males and 33 ± 14 W in females, of which approximately 15 W was due to the correction for frictional losses. We conclude that corrected peak power is independent of resistive load in males and females.  相似文献   

13.
The purpose of this study was to compare arm–leg coordination and kinematics during 100 m breaststroke in 26 (8 female; 18 male) specialist breaststroke swimmers. Laps were recorded using three 50-Hz underwater cameras. Heart rate and blood lactate were measured pre- and post-swim. Arm–leg coordination was defined using coordination phases describing continuity between recovery and propulsive phases of upper and lower limbs: coordination phase 1 (time between end of leg kick and start of the arm pull phases); and coordination phase 2 (time between end of arm pull and start of leg kick phases). Duration of stroke phases, coordination phases, swim velocity, stroke length (SL), stroke rate (SR) and stroke index (SI) were analysed during the last three strokes of each lap that were unaffected by turning or finishing. Significant changes in velocity, SI and SL (P < 0.05) were found between laps. Both sexes showed significant increase (P < 0.05) in heart rate and blood lactate pre- to post-swim. Males had significantly (P < 0.01) faster swim velocities resulting from longer SLs (P = 0.016) with no difference in SR (P = 0.064). Sex differences in kinematic parameters can be explained by anthropometric differences providing males with increased propelling efficiency.  相似文献   

14.
In the current study, we quantified biological movement variability on the start and early acceleration phase of sprinting. Ten male athletes aged 17–23 years (100-m personal best: 10.87 ± 0.36 s) performed four 10-m sprints. Two 250-Hz cameras recorded the sagittal plane action to obtain the two-dimensional kinematics of the block start and initial strides from subsequent manually digitized APAS motion analysis. Infra-red timing lights (80 Hz) were used to measure the 10-m sprinting times. The coefficient of variation (CV%) calculation was adjusted to separate biological movement variability (BCV%) from estimates of variability induced by technological error (SEM%) for each individual sprinter and measure. Pearson's product–moment correlation and linear regression analysis were used to establish relationships between measures of BCV% and 10-m sprint start performance (best 10-m time) or 10-m sprint start performance consistency (10-m time BCV%) using SPSS version 12.0. Measurement error markedly inflated traditional measures of movement variability (CV%) by up to 72%. Variability in task outcome measures was considerably lower than that observed in joint rotation velocities. Consistent generation of high horizontal velocity out of the blocks led to more stable and faster starting strides.  相似文献   

15.
Abstract

Throughout adolescence, swimmers begin to carry out demanding endurance and high-intensity training sets, the effect of which on redox status is largely unknown. The aim of the present study was to investigate the effects of 2000-m continuous swimming and 6 × 50-m maximal swimming on the redox status of adolescent swimmers. Fifteen male and 15 female swimmers, aged 14–18 years, provided blood samples before, immediately after, 1 h after, and 24 h after each exercise for the determination of redox status parameters. Oxidative damage was short-lived and manifest as increases in 8-hydroxy-2?-deoxyguanosine (8-OHdG) 1 h after high-intensity exercise (39%, P < 0.001) and in malondialdehyde immediately after both exercises (65%, P < 0.001). Alterations in antioxidant parameters were sustained during recovery: reduced glutathione decreased 24 h post-exercise (11%, P = 0.001), uric acid increased gradually after high-intensity exercise (29%, P < 0.001) and bilirubin peaked 24 h post-exercise (29%, P < 0.001). Males had higher 8-OHdG (49%, P = 0.001) and uric acid (29%, P < 0.001) concentrations than females. However, females showed higher values of malondialdehyde than males immediately post-exercise (30%, P = 0.039), despite lower pre-exercise values. In conclusion, both endurance and high-intensity exercise perturbed the redox balance without inducing prolonged oxidative damage in trained adolescent male and female swimmers. These swimming training trials were not found to be detrimental to the redox homeostasis of adolescents.  相似文献   

16.
Relative age effects (RAE) generate consistent participation inequalities and selection biases in sports. The study aimed to investigate RAE across all sports of the national Swiss talent development programme (STDP). In this study, 18 859 youth athletes (female N = 5353; mean age: 14.8 ± 2.5 y and male N = 13 506; mean age: 14.4 ± 2.4 y) in 70 sports who participated in the 2014 competitive season were evaluated. The sample was subdivided by sex and the national level selection (NLS, N = 2464). Odds ratios (ORs) of relative age quarters (Q1-Q4) and 95% confidence intervals (CI) were calculated. In STDP, small RAE were evident for females (OR 1.35 (95%-CI 1.24, 1.47)) and males (OR 1.84 (95%-CI 1.74, 1.95)). RAE were similar in female NLS athletes (OR 1.30 (95%-CI 1.08, 1.57)) and larger in male NLS athletes (OR 2.40 (95%-CI 1.42, 1.97)) compared to athletes in the lower selection level. In STDP, RAE are evident for both sexes in several sports with popular sports showing higher RAE. RAE were larger in males than females. A higher selection level showed higher RAE only for males. In Switzerland, talent identification and development should be considered as a long-term process.  相似文献   

17.
Irisin and redox status markers seem to share common pathways of exercise-induced upregulation. The aim of the present study was to assess the effects of sprint interval swimming exercise dose and sex on the circulating levels of irisin and redox status markers in adolescent swimmers. Sixteen male and 16 female adolescent swimmers completed two sets of 4 × 50 m maximal freestyle swimming with a send-off time of 90 s, separated by 10 min of passive recovery. Venous blood samples were obtained pre-exercise (Pre), after the first set (Post1) and after the second set (Post2). Males had higher irisin levels than females. Reduced glutathione (GSH, μmol g Hb?1) increased from 8.6 (2.2) [pooled males and females, mean (SD) throughout] at Pre to 9.4 (2.1) at Post1 and Post2. Total antioxidant capacity (μmol DPPH mL?1) increased from 0.89 (0.17) at Post1 to 0.94 (0.16) at Post2. 8-hydroxy-2´-deoxyguanosine (ng mL?1) increased from 20.9 (6.9) at Pre and 21.5 (7.1) at Post1 to 25.0 (10.9) at Post2. Overall, sprint interval swimming exercise induced small but potentially effective changes in the studied parameters. Exercise dose influenced the GSH and 8-OHdG responses, and sex affected irisin levels.  相似文献   

18.
We investigated the rotational effect of buoyant force around the body’s transverse axis, termed buoyant torque, during a 200m front crawl maximal swim. Eleven male swimmers of national or international level participated. One stroke cycle (SC) for each 50m was recorded with two above and four below water cameras. The following variables were analysed: swimming velocity; absolute and normalised buoyant force; minimum, average and maximum buoyant torque; SC and arm recovery times. The average value of buoyant torque was higher in the first 50m (14.2 ± 4.5Nm) than in the following 150m (9.3 ± 4.1Nm~10.9 ± 4.5Nm) and was directed to raise the legs and lower the head throughout the race. The change in its magnitude seemed to be linked to the shorter time spent proportionally in arm recovery (first 50m: 27.6% of SC time; next 150m: 23.3–24.4% of SC time). Most swimmers had periods of the SC where buoyant torque was directed to sink the legs, which accounted to 10% of SC time in the first 50m and about twice this duration in the next 150m. These periods were observed exclusively at some instances when the recovering arm had entered the water while the opposite arm was still underwater.  相似文献   

19.
Abstract

Given that males and females respond differently to endurance-based tasks, prolonged putting practice may provide an avenue to examine gender-related differences in golf swing kinematics. The aim of this project was to determine if 40 min of putting affects thorax and pelvis kinematics during the full swing of males and females. Three-dimensional trunk kinematics were collected during the swings of 19 male (age: 26 ± 7 years, handicap: 0.6 ± 1.1) and 17 female (age: 24 ± 7 years, handicap: 1.4 ± 1.7) golfers before and after 40 min of putting. Angular displacement at address, top of backswing and ball contact for the pelvis, thorax, and pelvis–thorax interaction were calculated, in addition to the magnitude of peak angular velocity and repeatability of continuous segment angular velocities. Female golfers had less pelvis and thorax anterior–posterior tilt at address, less thorax and thorax–pelvis axial rotation at top of backswing, and less pelvis and thorax axial rotation and pelvis lateral tilt at ball contact pre- to post-putting. Analysis of peak angular velocities revealed that females had significantly lower thorax–pelvis lateral tilt velocity pre- to post-putting. In conclusion, an endurance-based putting intervention affects females’ thorax and pelvis orientation angles and velocities to a greater extent than males.  相似文献   

20.
ABSTRACT

The skating acceleration to maximal speed transition (sprint) is an essential skill that involves substantial lower body strength and effective propulsion technique. Coaches and athletes strive to understand this optimal combination to improve performance and reduce injury risk. Hence, the purpose of this study was to compare body centre of mass and lower body kinematic profiles from static start to maximal speed of high calibre male and female ice hockey players on the ice surface. Overall, male and female skaters showed similar centre of mass trajectories, though magnitudes differed. The key performance difference was the male’s greater peak forward skating speed (8.96 ± 0.44 m/s vs the females’ 8.02 ± 0.36 m/s, p < 0.001), which was strongly correlated to peak leg strength (R 2 = 0.81). Males generated greater forward acceleration during the initial accelerative steps, but thereafter, both sexes had similar stride-by-stride accelerations up to maximal speed. In terms of technique, males demonstrated greater hip abduction (p = 0.006) and knee flexion (p = 0.026) from ice contact to push off throughout the trials. For coaches and athletes, these findings underscore the importance of leg strength and widely planted running steps during the initial skating technique to achieve maximal skating speed over a 30 m distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号