首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

2.
In lateral reactive movements, core stability may influence knee and hip joint kinematics and kinetics. Insufficient core stabilisation is discussed as a major risk factor for anterior cruciate ligament (ACL) injuries. Due to the higher probability of ACL injuries in women, this study concentrates on how gender influences trunk, pelvis and leg kinematics during lateral reactive jumps (LRJs). Perturbations were investigated in 12 men and 12 women performing LRJs under three different landing conditions: a movable landing platform was programmed to slide, resist or counteract upon landing. Potential group effects on three-dimensional trunk, pelvic, hip and knee kinematics were analysed for initial contact (IC) and the time of peak pelvic medial tilt (PPT). Regardless of landing conditions, the joint excursions in the entire lower limb joints were gender-specific. Women exhibited higher trunk left axial rotation at PPT (women: 4.0 ± 7.5°, men: ?3.1 ± 8.2°; p = 0.011) and higher hip external rotation at both IC and PPT (p < 0.01). But women demonstrated higher knee abduction compared to men. Men demonstrated more medial pelvic tilt at IC and especially PPT (men: –5.8 ± 4.9°, women: 0.3 ± 6.3°; p = 0.015). Strategies for maintaining trunk, pelvis and lower limb alignment during lateral reactive movements were gender-specific; the trunk and hip rotations displayed by the women were associated with the higher knee abduction amplitudes and therefore might reflect a movement strategy which is associated with higher injury risk. However, training interventions are needed to fully understand how gender-specific core stability strategies are related to performance and knee injury.  相似文献   

3.
Abstract

Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R 2 = 0.937 ± 0.050), anterior tibial translation (R 2 = 0.916 ± 0.059), and internal tibial rotation (R 2 = 0.831 ± 0.141) than medial tibial force (R 2 = 0.677 ± 0.193) and valgus joint rotation (R 2 = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.  相似文献   

4.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

5.
Abstract

This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s-1. Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s-1). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s-1. Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.  相似文献   

6.
Although landing in a plantarflexion and inversion position is a well-known characteristic of lateral ankle sprains, the associated kinematics of the knee and hip is largely unknown. Therefore, the purpose of this study was to examine the changes in knee and hip kinematics during landings on an altered landing surface of combined plantarflexion and inversion. Participants performed five drop landings from 30 cm onto a trapdoor platform in three different conditions: flat landing surface, 25° inversion, or a combined 25° plantarflexion and 25° inversion. Kinematic data were collected using a seven camera motion capture system. A 2 × 3 (leg × surface) repeated measures ANOVA was used for statistical analysis. The combined surface showed decreased knee and hip flexion range of motion (ROM) and increased knee abduction ROM (p < 0.05). The altered landing surface creates a stiff landing pattern where reductions in sagittal plane motion are transferred to the frontal plane, resulting in increased knee abduction. A stiff landing pattern is frequently related to increased risk of anterior cruciate ligament injury. It may be beneficial for athletes at risk to train for alternate methods of increasing their sagittal plane motion of the knee and hip with active knee or trunk flexion.  相似文献   

7.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

8.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

9.
ABSTRACT

The aim of this study was to assess the influence of different bike positions on the perception of fatigue, pain and comfort. Twenty cyclists underwent three tests that involved cycling for 45 min at their individual 50% peak aerobic power output while adopting different positions on the bike. Participants performed the cycling tests adopting three positions defined by two parameters (knee flexion angle [20°, 30°, 40°] and trunk flexion angle [35°, 45°, 55°]) in random order. Angles were measured using a 2D motion analysis system during cycling and applying Fonda’s correction factor. Perceptions of comfort, fatigue and pain were reported before the end of each test. The combination of 40° knee flexion and 35° trunk flexion was perceived as the most uncomfortable position. Moreover, greater knee flexion had a negative effect on trunk comfort, accompanied by greater levels of fatigue and pain perception in the anterior part of the thigh and knee. In conclusion, cyclists perceived the most comfortable position to be when the saddle height was within the recommended knee angle (30° calculated from the offset position or 40 ± 4.0° of absolute value). Upright trunk was found to be the most comfortable position for recreational cyclists, where aerodynamics is not so important. Cyclists’ bike perceptions should be taken into account when it comes to choosing the most beneficial position, since this can play a role in injury prevention and enhance cycling performance.  相似文献   

10.
The aim of this study was to compare the musculature activity and kinematics of knee and hip joints during front and back squat with maximal loading. Two-dimensional kinematical data were collected and electromyographic activities of vastus lateralis, vastus medialis, rectus femoris, semitendinosus, biceps femoris, gluteus maximus and erector spinae were measured while participants (n = 12, 21.2 ± 1.9 years old) were completing front and back squat exercises with maximum loading. Paired sample t-test was used for comparisons between two techniques. Results showed that the electromyographic activity of vastus medialis was found to be greater in the front squat compared to the back squat during the ascending phase (P < 0.05, d = 0.62; 95% CI, ?15.0/?4.17) and the whole manoeuvre (P < 0.05, d = 0.41; 95% CI, ?12.8/?0.43), while semitendinosus (P < 0.05, d = ?0.79; 95% CI, 0.62/20.59) electromyographic activity was greater in the back squat during the ascending phase. Compared to the front squat version, back squat exhibited significantly greater trunk lean, with no differences occurring in the knee joint kinematics throughout the movement. Results may suggest that the front squat may be preferred to the back squat for knee extensor development and for preventing possible lumbar injuries during maximum loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号