首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

In this study, video and force analysis techniques were used to distinguish between dragon boat paddlers of different ability. Six elite paddlers (three males, three females) and six sub-elite paddlers (two males, four females) were compared during high-intensity paddling (80–90 strokes · min?1). Video filming was conducted for two-dimensional kinematic analysis and an instrumented paddle was used to collect force data. Paddling efficiency, paddle force characteristics, and paddler kinematic variables were measured. Elite paddlers achieved higher paddling efficiency than sub-elite paddlers (elite: 76 ± 4%; sub-elite: 67 ± 10%; P = 0.080). Elite paddlers also showed higher peak force (elite: 16.3 ± 4.8 N · kg?2/3; sub-elite: 11.4 ± 2.6 N · kg?2/3; P = 0.052), average force (elite: 7.9 ± 2.8 N · kg?2/3; sub-elite: 5.5 ± 1.4 N · kg?2/3; P = 0.084), and impulse (elite: 3.0 ± 0.9 (N · s) · kg?2/3; sub-elite: 1.9 ± 0.4 (N · s) · kg?2/3; P = 0.026) than sub-elite paddlers, but these three results should be viewed with caution due to the small sample size and the unequal number of males and females in the two groups. Superior technique and greater strength enable the elite paddlers to achieve higher paddling efficiency. Paddlers use different joint movement patterns to develop propulsion, which are reflected in variations in the force–time curve.  相似文献   

2.
Abstract

This study investigated the influence of dehydration during soccer-type intermittent exercise on isokinetic and isometric muscle function. Eight soccer players performed two 90-min high-intensity intermittent shuttle-running trials without (NF) or with (FL) fluid ingestion (5 ml · kg?1 before and 2 ml · kg?1 every 15 min). Isokinetic and isometric strength and muscular power of knee flexors and knee extensors were measured pre-exercise, at half-time and post-exercise using isokinetic dynamometry. Sprint performance was monitored throughout the simulated-soccer exercise. Isokinetic knee strength was reduced at faster (3.13 rad · s?1; P = 0.009) but not slower (1.05 rad · s?1; P = 0.063) contraction speeds with exercise; however, there was no difference between FL and NF. Peak isometric strength of the knee extensors (P = 0.002) but not the knee flexors (P = 0.065) was significantly reduced with exercise with no difference between FL and NF. Average muscular power was reduced over time at both 1.05 rad · s?1 (P = 0.01) and 3.14 rad · s?1 (P = 0.033) but was not different between FL and NF. Mean 15-m sprint time increased with duration of exercise (P = 0.005) but was not different between FL and NF. In summary, fluid ingestion during 90 min of soccer-type exercise was unable to offset the reduction in isokinetic and isometric strength and muscular power of the knee extensors and flexors.  相似文献   

3.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

4.
Abstract

Low energy availability [(energy intake – exercise expenditure)/kg lean body mass], a component of the Female Athlete Triad, has been associated with menstrual disturbances and low bone mass. No studies have examined the energy availability of athletes across a season. The purpose of this study was to assess the prevalence of, and what contributes to, low energy availability in Division I female soccer players across a season. Nineteen participants aged 18–21 years (mean [Vdot]O2max: 57.0 ± 1.0 mL · kg?1 · min?1) were studied during the pre, mid, and post season. Mean energy availability was overall lowest at mid season, and lower at mid than post season (35.2 ± 3.7 vs. 44.5 ± 3.7 kcal · kg?1 lean body mass, P = 0.009). Low energy availability (<30 kcal · kg?1 lean body mass) was observed in 5/19 (26.3%), 5/15 (33.3%), and 2/17 (11.8%) of participants during the pre, mid, and post season. Dietary energy intake was lower mid (P = 0.008) and post season (P = 0.022) than it was pre season (pre: 2794 ± 233 kcal · day?1; mid: 2208 ± 156 kcal · day?1; post: 2161 ± 143 kcal · day?1). Exercise energy expenditure decreased significantly (P ≤ 0.001) over time (pre: 819 ± 57 kcal · day?1; mid: 642 ± 26 kcal · day?1; post: 159 ± 28 kcal · day?1). Low energy availability was due to lower dietary energy intake at lunch during pre season (P = 0.014) and during lunch and dinner during mid season (P ≤ 0.030). Energy availability was inversely related to body dissatisfaction (r = ?0.62, P = 0.017) and drive for thinness (r = ?0.55, P = 0.041) during mid season. Although most Division I female soccer players are not at risk for low energy availability, a concerning proportion exhibited low energy availability at pre or mid season. Further studies are needed to explore strategies to prevent and monitor low energy availability in these athletes.  相似文献   

5.
The purpose of the present study was to compare acute changes in oxidative stress and inflammation in response to steady state and low volume, high intensity interval exercise (LV-HIIE). Untrained healthy males (n = 10, mean ± s: age 22 ± 3 years; VO2MAX 42.7 ± 5.0 ml · kg?1 · min?1) undertook three exercise bouts: a bout of LV-HIIE (10 × 1 min 90% VO2MAX intervals) and two energy-matched steady-state cycling bouts at a moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensity on separate days. Markers of oxidative stress, inflammation and physiological stress were assessed before, at the end of exercise and 30 min post-exercise (post+30). At the end of all exercise bouts, significant changes in lipid hydroperoxides (LOOH) and protein carbonyls (PCs) (LOOH (nM): MOD +0.36; HIGH +3.09; LV-HIIE +5.51 and PC (nmol · mg?1 protein): MOD ?0.24; HIGH ?0.11; LV-HIIE ?0.37) were observed. Total antioxidant capacity (TAC) increased post+30, relative to the end of all exercise bouts (TAC (µM): MOD +189; HIGH +135; LV-HIIE +102). Interleukin (IL)-6 and IL-10 increased post+30 in HIGH and LV-HIIE only (P < 0.05). HIGH caused the greatest lymphocytosis, adrenaline and cardiovascular response (P < 0.05). At a reduced energy cost and physiological stress, LV-HIIE elicited similar cytokine and oxidative stress responses to HIGH.  相似文献   

6.
Abstract

The aim of the present study was to examine the relationship between intensities of exercise during match-play of elite-standard soccer referees with those of the players from the same match. Match analysis data were collected (Prozone® Leeds, UK) for 18 elite-standard soccer referees (age 26–49 years) on FA Premier League matches during the 2008/09 English FA Premier League season (236 observations). Running categories for referees and players were as follows: total distance covered (m); high-speed running distance (speed >19.8 km · h?1); and sprinting distance (speed >25.2 km · h?1). Analysis of the distance–time regression coefficients revealed no differences between the referees' and players' within-match rates of change for total distance covered (?0.594 ± 0.394 vs. ?0.713 ± 0.269 m · min?1; P = 0.104), high-speed running (?0.039 ± 0.077 vs. ?0.059 ± 0.030 m · min?1; P = 0.199), and sprinting (?0.003 ± 0.039 vs. ?0.021 ± 0.017 m · min?1; P = 0.114). In addition, there were no differences between across-season rates of change for total distance (–26.756 ± 40.434 vs. ?20.031 ± 25.502 m per match day; P = 0.439) and sprinting (–9.662 ± 7.564 vs. ?8.589 ± 4.351 m per match day; P = 0.542). These results show that elite-standard soccer referees' intensities of exercise during match-play are interrelated with those of the players and thus demonstrate that referees are able to keep pace with the players during FA Premier League matches.  相似文献   

7.
The purpose of the current study was to examine the effect of 6 weeks of whole body vibration training (WBVT) on body composition, muscle activity of the gastrocnemius and vastus lateralis, gastrocnemius muscle architecture (static and dynamic) and ground reaction forces (performance jump) during the take-off phase of a countermovement jump in young healthy adult males. A total of 33 men (23.31 ± 5.62 years) were randomly assigned to a whole body vibration group (experimental group, EGWBVT: n = 17; 22.11 ± 4.97 years) or a control group (CG: n = 16; 24.5 ± 6.27 years). The total duration of the intervention phase (WBVT) was 6 weeks with a frequency of 3 sessions per week. Statistically significant differences were observed (P ≤ 0.05) between pre- and post-test in the power peak (Δ 1.91 W · kg?1; P = 0.001), take-off velocity (0.1 cm · s?1; P = 0.002) and jump height (Δ 0.4 cm; P = 0.002) for EGWBVT. There were no statistically significant differences in any of the body composition and muscle architecture variables. Moreover, no significant differences were found between EGWBVT and CG nor changes in muscle activity during take-off phase of the gastrocnemius and vastus lateralis pre- versus post-training. This study suggests that a 6-week WBVT programme with increasing intensity improves jump performance but does not alter muscle activity nor muscle architecture in healthy young men.  相似文献   

8.
Abstract

The current study implemented a two-part design to (1) assess the vitamin D concentration of a large cohort of non-vitamin D supplemented UK-based athletes and 30 age-matched healthy non-athletes and (2) to examine the effects of 5000 IU · day?1 vitamin D3 supplementation for 8-weeks on musculoskeletal performance in a placebo controlled trial. Vitamin D concentration was determined as severely deficient if serum 25(OH)D < 12.5 nmol · l?1, deficient 12.5–30 nmol · l?1 and inadequate 30–50 nmol · l?1. We demonstrate that 62% of the athletes (38/61) and 73% of the controls (22/30) exhibited serum total 25(OH)D < 50 nmol · l?1. Additionally, vitamin D supplementation increased serum total 25(OH)D from baseline (mean ± SD = 29 ± 25 to 103 ± 25 nmol · l?1, P = 0.0028), whereas the placebo showed no significant change (53 ± 29 to 74 ± 24 nmol · l?1, P = 0.12). There was a significant increase in 10 m sprint times (P = 0.008) and vertical-jump (P = 0.008) in the vitamin D group whereas the placebo showed no change (P = 0.587 and P = 0.204 respectively). The current data supports previous findings that athletes living at Northerly latitudes (UK = 53° N) exhibit inadequate vitamin D concentrations (<50 nmol · l?1). Additionally the data suggests that inadequate vitamin D concentration is detrimental to musculoskeletal performance in athletes. Future studies using larger athletic groups are now warranted.  相似文献   

9.
Abstract

The metatarsal phalangeal joint (MPJ) and its crossing toe flexor muscles (TFM) represent the link between the large energy generating leg extensor muscles and the ground. The purpose of this study was to examine the functional adaptability of TFM to increased mechanical stimuli and the effects on walking, running and jumping performance.

Fifteen men performed a heavy resistance TFM strength training with 90% of the maximal voluntary isometric contraction (MVIC) for 7 weeks (560 contractions) for the left and right foot. Maximal MPJ and ankle plantar flexion moments during MVICs were measured in dynamometers before and after the intervention. Motion analyses (inverse dynamics) were performed during barefoot walking, running, and vertical and horizontal jumping. Athletic performance was determined by measuring jump height and distance.

Left (0.21 to 0.38 Nm · kg?1; P < 0.001) and right (0.24 to 0.40 Nm · kg?1; P < 0.001) MPJ plantar flexion moments in the dynamometer, external MPJ dorsiflexion moments (0.69 to 0.75 Nm · kg?1; P = 0.012) and jump distance (2.25 to 2.31 m; P = 0.006) in horizontal jumping increased significantly.

TFM responded highly to increased loading within a few weeks. The increased force potential made a contribution to an athlete's performance enhancement.  相似文献   

10.
Abstract

The aim of this study was to quantify the physiological loads of programmed “pre-season” and “in-season” training in professional soccer players. Data for players during each period were included for analysis (pre-season, n = 12; in-season, n = 10). We monitored physiological loading of training by measuring heart rate and rating of perceived exertion (RPE). Training loads were calculated by multiplying RPE score by the duration of training sessions. Each session was sub-categorized as physical, technical/tactical, physical and technical/tactical training. Average physiological loads in pre-season (heart rate 124 ± 7 beats · min?1; training load 4343 ± 329 Borg scale · min) were higher compared with in-season (heart rate 112 ± 7 beats · min?1; training load 1703 ± 173 Borg scale · min) (P < 0.05) and there was a greater proportion of time spent in 80–100% maximum heart rate zones (18 ± 2 vs. 5 ± 2%; P < 0.05). Such differences appear attributable to the higher intensities in technical/tactical sessions during pre-season (pre-season: heart rate 137 ± 8 beats · min?1; training load 321 ± 23 Borg scale · min; in-season: heart rate 114 ± 9 beats · min?1; training load 174 ± 27 Borg scale · min; P < 0.05). These findings demonstrate that pre-season training is more intense than in-season training. Such data indicate that these adjustments in load are a direct attempt to deliver training to promote specific training adaptations.  相似文献   

11.
The purpose of this study was to gain a holistic understanding of the efficacy of Zumba® fitness in a community-recruited cohort of overweight and physically inactive women by evaluating (i) its physiological effects on cardiovascular risk factors and inflammatory biomarkers and (ii) its mental health-enhancing effects on factors of health-related quality of life (HRQoL). Participants were randomly assigned to either engagement in one to two 1 h classes of Zumba® fitness weekly (intervention group; n = 10) or maintenance of habitual activity (control group; n = 10). Laboratory assessments were conducted pre- (week 0) and post-intervention (week 8) with anthropometric, physiological, inflammatory and HRQoL data collected. In the intervention group, maximal oxygen uptake significantly increased (P < 0.05; partial η2 = 0.56) by 3.1 mL · kg?1 · min?1, per cent body fat significantly decreased (P < 0.05; partial η2 = 0.42) by –1.2%, and interleukin-6 and white blood cell (WBC) count both significantly decreased (P < 0.01) by –0.4 pg · mL?1 (partial η2 = 0.96) and –2.1 × 109 cells · L?1 (partial η2 = 0.87), respectively. Large magnitude enhancements were observed in the HRQoL factors of physical functioning, general health, energy/fatigue and emotional well-being. When interpreted in a community-based physical activity and psychosocial health promotion context, our data suggest that Zumba® fitness is indeed an efficacious health-enhancing activity for adults.  相似文献   

12.
Abstract

The aim of this study was to evaluate the utility of the RT3 accelerometer in young children, compare its accuracy with heart rate monitoring, and develop an equation to predict energy expenditure from RT3 output. Forty-two volunteers (mean age 12.2 years, s = 1.1) exercised at two horizontal and graded walking speeds (4 and 6 km · h?1, 0% grade and 6% grade), and one horizontal running speed (8 km · h?1, 0% grade), on a treadmill. Energy expenditure and oxygen consumption ([Vdot]O2) served as the criterion measures. Comparison of RT3 estimates (counts and energy expenditure) demonstrated significant differences at 4, 6, and 8 km · h?1 on level ground (P < 0.01), while no significant differences were noted between horizontal and graded walking at 4 and 6 km · h?1. Correlation and regression analyses indicated no advantage of vector magnitude over the vertical plane (X) alone. A strong relationship between RT3 estimates and indirect calorimetry across all speeds was obtained (r = 0.633–0.850, P < 0.01). A child-specific prediction equation (adjusted R 2 = 0.753) was derived and cross-validated that offered a valid energy expenditure estimate for walking/running activities. Despite recognized limitations, the RT3 may be a useful tool for the assessment of children's physical activity during walking and running.  相似文献   

13.
Abstract

In this study, we investigated the effect of ingesting carbohydrate alone or carbohydrate with protein on functional and metabolic markers of recovery from a rugby union-specific shuttle running protocol. On three occasions, at least one week apart in a counterbalanced order, nine experienced male rugby union forwards ingested placebo, carbohydrate (1.2 g · kg body mass?1 · h?1) or carbohydrate with protein (0.4 g · kg body mass?1 · h?1) before, during, and after a rugby union-specific protocol. Markers of muscle damage (creatine kinase: before, 258 ± 171 U · L?1 vs. 24 h after, 574 ± 285 U · L?1; myoglobin: pre, 50 ± 18 vs. immediately after, 210 ± 84 nmol · L?1; P < 0.05) and muscle soreness (1, 2, and 3 [maximum soreness = 8] for before, immediately after, and 24 h after exercise, respectively) increased. Leg strength and repeated 6-s cycle sprint mean power were slightly reduced after exercise (93% and 95% of pre-exercise values, respectively; P < 0.05), but were almost fully recovered after 24 h (97% and 99% of pre-exercise values, respectively). There were no differences between trials for any measure. These results indicate that in experienced rugby players, the small degree of muscle damage and reduction in function induced by the exercise protocol were not attenuated by the ingestion of carbohydrate and protein.  相似文献   

14.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

15.
The purpose of this study was to evaluate the effects of 6 weeks of supramaximal exercise training (SET) on performance variables and metabolic changes in sedentary obese adults.

Twenty-four obese adults were randomly allocated into a non-trained (NT) [n = 12; body mass index (BMI) = 33(3)] and SET group [n = 12; BMI = (33(2)]. After baseline metabolic and fitness measurements, the participants completed a 6-week SET intervention. Metabolic, anthropometric, and fitness assessments were repeated post-intervention.

For SET, fasting glucose (4.64(0.15) vs. 4.32(0.22) mmol · l–1; P < 0.01), insulin (23.2(4.6) vs. 13.8(3.3) µmol · ml–1; P < 0.01), homoeostasis model assessment-insulin resistance index (4.78(1.2) vs. 2.65(1.5); P < 0.01) and systolic blood pressure (127(3) vs. 120(3) mmHg; P < 0.01) were significantly lower 24-h post-intervention than at baseline and for the NT group, and these changes remained significant at 72-h and 2-weeks post-intervention (P < 0.01, respectively). Interestingly, nonesterified fatty acids (0.62(0.09) vs. 0.71(0.11) mmol · l–1; P < 0.01) and resting fat oxidation rate (57(11) vs. 63(4)%; P < 0.01) increased significantly from baseline 24-h post-intervention in the SET group and from baseline at 72-h (P < 0.01, respectively) and 2-weeks post-intervention (P < 0.01, respectively). Six weeks of SET improved a number of metabolic and vascular risk factors in obese, sedentary adults, highlighting the potential of SET to provide an alternative exercise model for the improvement of metabolic health in this population.  相似文献   


16.
ABSTRACT

The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min?1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min?1 with lower peak power produced at 80 revs · min?1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η2 = 0.960), 120 revs · min?1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η2 = 0.970) and 140 revs · min?1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η2 = 0.989). The shortest time to power production was attained at 120 revs · min?1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min?1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η2 = 0.800) 100 revs · min?1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η2 = 0.974) and 140 revs · min?1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.  相似文献   

17.
Abstract

The aim of this study was to assess the extent to which measures derived from the new FIFA referees’ fitness tests can be used to monitor a referee's match-related physical capacity. Match-analysis data were collected (Prozone®, Leeds, UK) from 17 soccer referees for 5.0 (s = 1.7) FA Premier League matches per referee during the first 4 months of the 2007–08 season. Physical match performance categories included total distance covered, high-intensity running distance (speed >5.5 m · s?1), and sprinting distance (>7.0 m · s?1). The two tests were a 6 × 40-m sprint test and a 150-m interval test. Heart rate demand was correlated with total match distance covered (r = ?0.70, P = 0.002) and high-intensity running (r = ?0.57, P = 0.018) in the interval test. The fastest 40-m sprint was related to total distance covered (r = ?0.69, P = 0.002), high-intensity running (r = ?0.76, P < 0.001), and sprinting distance (r = ?0.75, P = 0.001), while mean time for the 40-m sprints was related to total distance covered (r = ?0.70, P = 0.002), high-intensity running (r = ?0.77, P < 0.001), and sprinting distance (r = ?0.77, P < 0.001). The referees who recorded the best interval-test heart rate demand and fastest 40-m time produced the best physical match performances. However, only the sprint test and in particular the fastest 40-m time had appropriate construct validity for the physical assessment of soccer referees.  相似文献   

18.
Abstract

In this study, we examined indirect markers of muscle damage and muscle soreness following a 50-km cross-country ski race completed in 2 h and 57 min to 5 h and 9 min by 11 moderately trained male university students. Maximal strength of the knee extensors, several blood markers of muscle damage and inflammation, and muscle soreness (visual analog scale: 0 = “no pain”, 50 mm = “unbearably painful”) were measured one day before, immediately after, and 24, 48, 72, and 144 h after the race. Changes in the measures over time were analysed using one-way repeated-measures analysis of variance and a Fisher's post-hoc test. Maximal strength of the knee extensors decreased significantly (P<0.05) immediately after the race (mean ?27%, s=6), but returned to pre-exercise values within 24 h of the race. All blood markers increased significantly (P<0.05) following the race, peaking either immediately (lactate dehydrogenase: 253.7 IU · l?1, s=13.3; myoglobin: 476.4 ng · ml?1, s=85.5) or 24 h after the race (creatine kinase: 848.0 IU · l?1, s=151.9; glumatic oxaloacetic transaminase: 44.3 IU · l?1, s=4.2; aldolase: 10.0 IU · l?1, s=1.3; C-reactive protein: 0.36 IU · l?1, s=0.08). Muscle soreness developed in the leg, arm, shoulder, back, and abdomen muscles immediately after the race (10–30 mm), but decreased after 24 h (<15 mm), and disappeared 48 h after the race. These results suggest that muscle damage induced by a 50-km cross-country ski race is mild and recovery from the race does not take long.  相似文献   

19.
Abstract

The aims of this study were to establish the physical and physiological attributes of elite and sub-elite Malaysian male badminton players and to determine whether these attributes discriminate elite players from sub-elite players. Measurements and tests of basic anthropometry, explosive power, anaerobic recovery capacity, badminton-specific movement agility, maximum strength, and aerobic capacity were conducted on two occasions, separated by at least one day. The elite (n = 12) and sub-elite (n = 12) players' characteristics were, respectively: mean age 24.6 years (s = 3.7) and 20.5 years (s = 0.7); mass 73.2 kg (s = 7.6) and 62.7 kg (s = 4.2); stature 1.76 m (s = 0.07) and 1.71 m (s = 0.05); body fat 12.5% (s = 4.8) and 9.5% (s = 3.4); estimated VO2max 56.9 ml · kg?1 · min?1 (s = 3.7) and 59.5 ml · kg?1 · min?1 (s = 5.2). The elite players had greater maximum absolute strength in one-repetition maximum bench press (P = 0.015) compared with the sub-elite players. There were significant differences in instantaneous lower body power estimated from vertical jump height between the elite and sub-elite groups (P < 0.01). However, there was no significant difference between groups in shuttle run tests and on-court badminton-specific movement agility tests. Our results show that elite Malaysian male badminton players are taller, heavier, and stronger than their sub-elite counterparts. The test battery, however, did not allow us to discriminate between the elite and sub-elite players, suggesting that at the elite level tactical knowledge, technical skills, and psychological readiness could be of greater importance.  相似文献   

20.
Purpose: The purpose of this study was to quantify and compare training and competition demands in basketball. Methods: Fifteen semiprofessional male basketball players wore microsensors during physical conditioning training (PCT), games-based training (GBT), and competition to measure absolute and relative (·min?1) PlayerLoadTM (PL) and estimated equivalent distance (EED). Internal responses were calculated using absolute and relative session rating of perceived exertion (sRPE) and summated heart rate zones (SHRZ). Integrated measures were calculated as sRPE:PL and SHRZ:PL ratios. Results: PlayerLoad (arbitrary units [AU]) and EED (m) were statistically significantly (p < .05) higher during PCT (632 ± 139 AU, d = 1.36; 5,964 ± 1,312 m, d = 1.36; 6.50 ± 0.81 AU·min?1, d = 2.44; 61.88 ± 7.22 m·min?1, d = 2.60) and GBT (624 ± 113 AU, d = 1.54; 5,892 ± 1,080 m, d = 1.53; 6.10 ± 0.77 AU·min?1, d = 2.14; 56.76 ± 6.49 m·min?1, d = 2.22) than they were during competition (449 ± 118 AU; 3,722 ± 1474 m; 4.35 ± 1.09 AU·min?1; 41.01 ± 10.29 m·min?1). Summated heart rate zones were statistically significantly (p < .05) higher during PCT (314 ± 86 AU, d = 1.05; 3.22 ± 0.50 AU·min?1, d = 1.94) and GBT (334 ± 79 AU, d = 1.38; 3.19 ± 0.54 AU·min?1, d = 1.83) than they were during competition (225 ± 77 AU; 2.17 ± 0.69 AU·min?1). The ratio of sRPE:PL was statistically significantly (p < .05) higher during competition (1.58 ± 0.85) than during PCT (0.98 ± 0.22, d = 1.44) and GBT (0.91 ± 0.24, d = 1.90). Conclusion: Training demands exceeded competition demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号