首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

2.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

3.
Abstract

Eight male and eight female runners were matched on performance in a 24.2 km (15 mile) road race (X time ± SD = 115.1 ± 2.2 min for females, 115.8 ± 3.2 min for males). All subjects completed a graded treadmill run during which [Vdot]O 2 and heart rate (HR) were monitored at several submaximal running speeds and at maximal exercise. Blood samples, collected at rest and 3 min after maximal exercise, were analyzed for hematocrit and hemoglobin (Hb), lactic acid (LA) and 2,3-diphosphoglyceric acid (2,3-DPG) concentrations. Body composition was assessed via hydrostatic weighing. Group comparisons revealed that the males were taller, heavier, and higher in Hb than the females (p < .05). The sexes did not differ significantly in percentage of body fat or in [Vdot]O 2 (ml · kg –1 · min –1 ), HR, respiratory exchange ratio, or ventilatory equivalent of oxygen during submaximal running or at maximal exercise (p > .05). 2,3-DPG was higher in the females when expressed relative to Hb (p < .05). These data indicate that female and male distance runners of equal performance levels are very similar in body composition and in metabolic and cardiorespiratory responses to exercise. The higher Hb observed in males may have been offset in part by the females' higher 2,3-DPG/Hb ratio.  相似文献   

4.
Abstract

The purpose of this study was to determine the relationship between female distance running performance on a 10 km road race and body composition, maximal aerobic power ([Vdot]O2 max ), running economy (steady-state [Vdot]O2 at standardized speeds), and the fractional utilization of [Vdot]O2max at submaximal speeds (% [Vdot]O2max ). The subjects were 14 trained and competition–experienced female runners. The subjects averaged 43.7 min on the 10 km run, 53.0 ml · kg?1 · min?1 on [Vdot]O2max , and 33.9, 37.7, and 41.8 ml · kg?1 · min?1 for steady-state [Vdot]O2 at three standardized running paces (177, 196, and 215 m · min?1). The mean values for fractional utilization of aerobic capacity for these three submaximal speeds were 64.3, 71.4, and 79.3% [Vdot]O2max , respectively. Significant (p < 0.01) relationships with performance were found for [Vdot]O2max (r = ?0.66) and % [Vdot]O2max at a standardized speed (r = 0.65). No significant (p > 0.05) relationships were found between running performance and either running economy or relative body fat. As with male heterogeneous groups, trained female road racing performance is significantly related to [Vdot]O2max and % [Vdot]O2max , but not related to body composition or running economy. It was further concluded that on a 10 km road race, trained females operate at a % [Vdot]O2max similar to that of their trained male counterparts.  相似文献   

5.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). 'Fitness' was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol l-1 (V-2 mM) or 4 mmol l-1 (V-4 mM), 'relative running economy' and 5 km times (r = -0.84), but modest and non-significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 +/- 1.97 min vs 20.97 +/- 1.70 min; P less than 0.05). Therefore the of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

6.
This study aimed to quantify the intra-individual reliability of a number of physiological variables in a group of national and international young distance runners. Sixteen (8 male, 8 female) participants (16.7?±?1.4 years) performed a submaximal incremental running assessment followed by a maximal running test, on two occasions separated by no more than seven days. Maximal oxygen uptake (V?O2max), speed at V?O2max (km?h?1), running economy and speed and heart rate (HR) at fixed blood lactate concentrations were determined. V?O2max and running economy were scaled for differences in body mass using a power exponent derived from a larger cohort of young runners (n?=?42). Running economy was expressed as oxygen cost and energy cost at the speed associated with lactate turnpoint (LTP) and the two speeds prior to LTP. Results of analysis of variance revealed an absence of systematic bias between trials. Reliability indices showed a high level of reproducibility across all parameters (typical error [TE] ≤2%; intra-class correlation coefficient >0.8; effect size <0.6). Expressing running economy as energy cost appears to provide superior reliability than using oxygen cost (TE ~1.5% vs. ~2%). Blood lactate and HR were liable to daily fluctuations of 0.14–0.22?mmol?L?1 and 4–5?beats?min?1 respectively. The minimum detectable change values (95% confidence) for each parameter are also reported. Exercise physiologists can be confident that measurement of important physiological determinants of distance running performance are highly reproducible in elite junior runners.  相似文献   

7.
Comparison of maximal anaerobic running tests on a treadmill and track   总被引:1,自引:0,他引:1  
To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol x l-1 (v10 mM) and 5 mmol x l(-1) (v5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 +/- 0.79 m x s(-1)) than on the treadmill (7.13 +/- 0.75 m x s(-1)), and sprint runners had significantly higher vmax, v10 mM, and peak blood lactate concentration than distance runners (P < 0.05). The Pearson product--moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v10 mM), 0.70 (v5 mM), and 0.78 (peak blood lactate concentration) (P < 0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with vmax in the treadmill (r = 0.90, P < 0.001) and track protocols (r = 0.92, P < 0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and vmax in the treadmill (r = 0.70, P < 0.01) and track protocols (r = 0.63, P < 0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

8.
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6?min?mile?1) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.  相似文献   

9.
Abstract

Two experiments were conducted to examine the accuracy of mechanical pedometers in walking and running. Groups of 20 volunteer subjects were used in each experiment. In experiment 1, subjects wore 4 identical pedometers on the waist during six 1-mile walks on a motor driven treadmill, two at each of 3 speeds: 2, 3, and 4 mph. Experiment 2 required subjects wearing 5 pedometers to perform two 1-mile walks at their own pace under each of two different conditions: (1) on a 400 meter track and (2) along a jogging path over a measured mile. These subjects also completed two 1-mile runs at their own pace over the same measured mile course. In both experiments, a two-way ANOVA with replicates showed significant effects of subjects, condition (speed), and subjects-condition interaction. Test-retest reliability coefficients ranged from ?0.13 to 0.81. Results of these studies indicate that the ability of the mechanical pedometer to measure distance is inconsistent. The findings indicate that pedometers are more accurate for some individuals than others. Also their accuracy varies with the speed of walking and is different for walking compared to running.  相似文献   

10.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). ‘Fitness’ was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol 1‐1(V‐2 mM) or 4 mmol 1‐1 (V‐4 mM), ‘relative running economy’ and 5 km times (r = 0.84), but modest and non‐significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 ± 1.97 min vs 20.97 ± 1.70 min; P <0.05). Therefore the results of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

11.
Field tests of speed and endurance may be used to evaluate the probability of success and to create efficient training strategies for sports. Currently, both invasive and non-invasive methods are used for this purpose. While invasive methods cause some discomfort to subjects, non-invasive methods may employ practices associated with the sport itself. One such method employs the linear relationship between exercise intensity or running speed and distance covered running at that speed represented on a semi-logarithmic scale. The separation of endurance runners into three different groups can be confirmed by different values for the slope coefficient (b) of this linear relation. According to findings among top Czechoslovak endurance runners, supplemented by the data of other authors, the values of coefficient b in middle-distance runners are in the range -2.166 to -1.700, in long-distance runners -1.520 to -1.050 and in marathon runners -0.836 to -0.436. Similarly, a separation of young endurance runners into groups of middle-distance and long-distance runners must be within the range -2.158 to -1.800 and for young long-distance runners -1.700 to -1.300. Based on these findings, the optimum competitive distance for adult athletes can be established in relation to current training status. In young athletes, it is possible to select gifted runners with predispositions for middle-distance and long-distance running. For both groups of athletes, more efficient training methods can be selected to optimize their predispositions for maximal performance.  相似文献   

12.
The effects of treadmill running on impact acceleration were examined together with the interaction between running surface and runner's fatigue state. Twenty recreational runners (11 men and 9 women) ran overground and on a treadmill (at 4.0 m/s) before and after a fatigue protocol consisting of a 30-minute run at 85% of individual maximal aerobic speed. Impact accelerations were analysed using two lightweight capacitive uniaxial accelerometers. A two-way repeated-measure analysis of variance showed that, in the pre-fatigue condition, the treadmill running decreased head and tibial peak impact accelerations and impact rates (the rate of change of acceleration), but no significant difference was observed between the two surfaces in shock attenuation. There was no significant difference in acceleration parameters between the two surfaces in the post-fatigue condition. There was a significant interaction between surface (treadmill and overground) and fatigue state (pre-fatigue and post-fatigue). In particular, fatigue when running overground decreased impact acceleration severity, but it had no such effect when running on the treadmill. The effects of treadmill running and the interaction need to be taken into account when interpreting the results of studies that use a treadmill in their experimental protocols, and when prescribing physical exercise.  相似文献   

13.
ABSTRACT

Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen’s d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.  相似文献   

14.
During a maximal incremental ergocycle test, the power output associated with Respiratory Exchange Ratio equal to 1.00 (RER = 1.00) predicts maximal lactate steady state (MLSS). We hypothesised that these results are transferable for runners on the field. Fourteen runners performed a maximal progressive test, to assess the speed associated with RER = 1.00, and several 30 minutes constant velocity tests to determine the speed at MLSS. We observed that the speeds at RER = 1.00, at the second ventilatory threshold (VT2) and at MLSS did not differ (15.7 ± 1.1 km · h?1, 16.2 ± 1.4 km · h?1, 15.5 ± 1.1 km · h?1 respectively). The speed associated with RER = 1.00 was better correlated with that at MLSS (r = 0.79; p = 0.0008) than that at VT2 (r = 0.73; p = 0.002). Neither the concentration of blood lactate nor the heart rate differed between the speed at RER = 1.00 and that at MLSS from the 10th and the 30th minute of the constant velocity test. Bland and Altman analysis showed a fair agreement between the speed at MLSS and that at RER (0.2 ± 1.4 km · h?1). This study demonstrated that the speed associated with RER = 1.00 determined during maximal progressive track running allows a fair estimation of the speed associated with MLSS, markedly decreasing the burden of numerous invasive tests required to assess it.  相似文献   

15.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

16.
The purpose of this study was to determine the effects of a verbal and visual feedback system on running technique, ratings of perceived exertion (RPE), and running economy. Twenty‐two female novice runners were randomly assigned to experimental (n = 11) and control (n = 11) groups. The experimental subjects received verbal and visual feedback concerning their running technique prior to and during each training run. Training involved 15 20‐min treadmill running sessions over a 5‐week period. The control group adhered to the same training routine but did not receive feedback concerning their running technique. High‐speed (100 Hz) photography was used to collect biomechanical data. A submaximal oxygen consumption test and Borg's RPE scale were used to collect data concerning running economy and perceived exertion, respectively. Statistical analysis using ANCOVA revealed that the proposed feedback system had a significant (P < 0.01) effect on the experimental group's running technique by affecting the following desired changes relative to the control group: greater relative stride lengths, shorter support time, greater ankle dorsiflexion during support and greater knee flexion during support and non‐support. There were no significant differences between the groups in submaximal VO2 or RPE. The results of this study suggest that verbal and visual feedback are effective means of eliciting modifications in running style in female novice runners. The link between modifications in running style and improvements in running economy and perceived exertion remains unclear.  相似文献   

17.
Abstract

The purpose of this investigation was to evaluate and quantify physiological differences among groups of distance runners. The subjects included 20 elite distance runners (8 marathon, 12 middle-long distance) and 8 good runners. Working capacity and cardiorespiratory function were determined by submaximal and maximal treadmill tests, and body composition by hydrostatic weighing. The variables studied were maximum oxygen uptake ([Vdot]O2 max), [Vdot]O2 submax, lactic acid submax, lean body weight, and fat weight. MANOVA showed that the good runners differed from the elite runners (p < 0.01) and the elite marathon runners differed from the elite middle-long distance runners (p < 0.05). Discriminant analysis showed that both functions were significant. The first was a general physiological efficiency factor that separated the good and elite runners. The second separated the elite marathon and middle-long distance groups. The second function showed that the marathon runners had lower lactic acid submax values. The middle-long distance runners had higher [Vdot]O2 max values. Classification analysis was used to evaluate the accuracy of the discriminant analysis; 80% of the elite runners were correctly classified as marathon or middle-long distance runners. The discriminant functions were used to develop a multivariate scaling model for evaluating distance runners. Two premier runners, one marathoner (F. Shorter) and one middle-long distance runner (S. Prefontaine), were found to be at the extremes of the scale. The data showed that the discriminant functions provided a valid model for evaluating differences among elite distance runners.  相似文献   

18.
Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strike, tibial and head impact accelerations, and tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle activity were registered. Only 68% of the runners adopted a non-rearfoot strike pattern during BF. Running BF led to a reduction of TA activity as well as to an increase of GL and GM activity compared to BRS and SH. Furthermore, BRS increased tibial peak acceleration, tibial magnitude and tibial acceleration rate compared to SH and BF. In conclusion, 32% of our runners showed a rearfoot strike pattern at the first attempts at running barefoot, which corresponds to a running style (BRS) that led to increased muscle activation and impact accelerations and thereby to a potentially higher risk of injury compared to running shod.  相似文献   

19.
To investigate the benefits of 'living high and training low' on anaerobic performance at sea level, eight 400-m runners lived for 10 days in normobaric hypoxia in an altitude house (oxygen content = 15.8%) and trained outdoors in ambient normoxia at sea level. A maximal anaerobic running test and 400-m race were performed before and within 1 week of living in the altitude house to determine the maximum speed and the speeds at different submaximal blood lactate concentrations (3, 5, 7, 10 and 13 mmol x l(-1)) and 400-m race time. At the same time, ten 400-m runners lived and trained at sea level and were subjected to identical test procedures. Multivariate analysis of variance indicated that the altitude house group but not the sea-level group improved their 400-m race time during the experimental period (P < 0.05). The speeds at blood lactate concentrations of 5-13 mmol x l(-1) tended to increase in the altitude house group but the response was significant only at 5 and 7 mmol x l(-1) (P < 0.05). Furthermore, resting blood pH was increased in six of the eight altitude house athletes from 0.003 to 0.067 pH unit (P < 0.05). The results of this study demonstrate improved 400-m performance after 10 days of living in normobaric hypoxia and training at sea level. Furthermore, the present study provides evidence that changes in the acid-base balance and lactate metabolism might be responsible for the improvement in sprint performance.  相似文献   

20.
To investigate the benefits of ‘living high and training low' on anaerobic performance at sea level, eight 400-m runners lived for 10 days in normobaric hypoxia in an altitude house (oxygen content = 15.8%) and trained outdoors in ambient normoxia at sea level. A maximal anaerobic running test and 400-m race were performed before and within 1 week of living in the altitude house to determine the maximum speed and the speeds at different submaximal blood lactate concentrations (3, 5, 7, 10 and 13 mmol· l-1) and 400-m race time. At the same time, ten 400-m runners lived and trained at sea level and were subjected to identical test procedures. Multivariate analysis of variance indicated that the altitude house group but not the sea-level group improved their 400-m race time during the experimental period (P ? 0.05). The speeds at blood lactate concentrations of 5–13 mmol· l-1 tended to increase in the altitude house group but the response was significant only at 5 and 7 mmol·l-1 (P ? 0.05). Furthermore, resting blood pH was increased in six of the eight altitude house athletes from 0.003 to 0.067 pH unit (P ? 0.05). The results of this study demonstrate improved 400-m performance after 10 days of living in normobaric hypoxia and training at sea level. Furthermore, the present study provides evidence that changes in the acid–base balance and lactate metabolism might be responsible for the improvement in sprint performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号