首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An anthropometric analysis was conducted on 35 elite male Australian track cyclists having a mean age of 22.6 years and who had been competing on average for 9 years. The relationship of anthropometric parameters to both bicycle saddle height and cycling performance was also investigated. Subjects were allocated, for purposes of comparison, to an endurance or sprint group on the basis of their competitive event. The group members in total were ectomorphic mesomorphs of height 178±4.8 cm and weight 72.5 ±6.6 kg on average. Percentage of saddle height to lower limb length averaged 99±1.6%, and significant correlations existed between strength and both body mass (r=0.57) and thigh girth (r = 0.55). No significant correlation was seen between any anthropometric parameter and performance in an individual event. Cyclists in the sprint group were heavier (76.2 ± 7.4 vs. 70.0 ± 4.7 kg, P<0.01) and stronger (258 ± 44.4 vs. 216 ± 30.5 Nm, P<0.01), and had larger chest (98.2 ± 6.2 vs. 92.4 ± 2.9 cm, P<0.01), arm (33.0±2.2 vs. 30.7± 1.6 cm, P<0.01), thigh (57.5 ± 3.4 vs. 54.3 ± 2.5 cm, P<0.01) and calf girths (37.8±1.7 vs. 36.2±1.9 cm, P<0.05) than cyclists in the endurance group. They were also more mesomorphic (5.3 ± 0.7 vs. 4.7 ± 0.8, P<0.05) and less ectomorphic (2.3 ± 0.9 vs. 2.9±0.6, P<0.05) than the endurance cyclists.  相似文献   

2.
The aims of this study were to compare the physiological and anthropometric characteristics of successful mountain bikers and professional road cyclists and to re-examine the power-to-weight characteristics of internationally competitive mountain bikers. Internationally competitive cyclists (seven mountain bikers and seven road cyclists) completed the following tests: anthropometric measurements, an incremental cycle ergometer test and a 30 min laboratory time-trial. The mountain bikers were lighter (65.3+/-6.5 vs 74.7+/-3.8 kg, P= 0.01; mean +/- s) and leaner than the road cyclists (sum of seven skinfolds: 33.9+/-5.7 vs 44.5+/-10.8 mm, P = 0.04). The mountain bikers produced higher power outputs relative to body mass at maximal exercise (6.3+/-0.5 vs 5.8+/-0.3 W x kg(-1), P= 0.03), at the lactate threshold (5.2+/-0.6 vs 4.7+/-0.3 W x kg(-1), P= 0.048) and during the 30 min time-trial (5.5+/-0.5 vs 4.9+/-0.3 W x kg(-1), P = 0.02). Similarly, peak oxygen uptake relative tobody mass was higher in the mountain bikers (78.3+/-4.4 vs 73.0+/-3.4 ml x kg(-1) x min(-1), P = 0.03). The results indicate that high power-to-weight characteristics are important for success in mountain biking. The mountain bikers possessed similar anthropometric and physiological characteristics to previously studied road cycling uphill specialists.  相似文献   

3.
The body composition and somatotype of 16 trained female triathletes aged 18.8-32.8 years were measured. All of the subjects were engaged in a competitive training programme and participated in the same triathlon. Anthropometric variables included height, mass, selected diameters, girths and skinfolds, and a Heath-Carter anthropometric somatotype. Body composition was determined by hydrostatic weighing procedures and skinfold patterns. Comparisons were made with Olympic swimmers and runners. The triathletes had a mean body mass of 55.2 kg and a mean height of 162.1 cm. When compared to swimmers, the triathletes were somewhat shorter and significantly (P less than 0.005) older. On most other measures, including a balanced mesomorph somatotype of 3.1-4.3-2.6, they were similar to swimmers. This group of triathletes were generally heavier, less lean, more mesomorphic and less ectomorphic than elite runners. Reported body densities from other studies indicated little difference between the triathletes and other groups. Skinfold patterns were similar in shape for all groups, but the runners had smaller values, at all sites, than either swimmers or triathletes. Because of lack of information on cyclists, adequate comparisons were not possible. Regression analysis indicated that training parameters were more important than anthropometric measures in the prediction of performance. It was concluded that this group of triathletes were closer, with respect to both body composition and somatotype, to swimmers than to runners.  相似文献   

4.
A 30-s 'all-out' power protocol was studied in four groups of racing cyclists including internationals (n = 8), Category 1 (n = 10), Category 2 (n = 15) and Category 3 (n = 11). Following warm-up each subject completed five trials interspersed by 3 min of low intensity exercise on an ergowheel racing cycle ergometry system at a power output of 15 W kg-1 body weight, generated at 130 rev min-1. Temporal indices of performance included delay time (DT) to achieve the power criterion, total time (TT) of the maintenance of the power criterion and the ratio of TT/DT. 'Explosive' leg strength was assessed from a vertical jump. The results indicated that international and Category 1 cyclists had lower DT (2.2 +/- 0.1 s and 2.1 +/- 0.0 s, respectively; P less than 0.05), higher TT (28.1 +/- 0.7 s and 27.0 +/- 0.7 s, respectively; P less than 0.05) and elevated TT/DT (12.8 and 12.9, respectively; P less than 0.01). 'Explosive' leg strength was also higher (P less than 0.05) in the internationals than in the other groups of cyclists. The protocol provides a sport-related method for the assessment of short term endurance performance ability in racing cyclists which may be of value in identifying the anaerobic capability of individual cyclists.  相似文献   

5.
The aims of this study were to compare the physiological and anthropometric characteristics of successful mountain bikers and professional road cyclists and to re-examine the power-to-weight characteristics of internationally competitive mountain bikers. Internationally competitive cyclists (seven mountain bikers and seven road cyclists) completed the following tests: anthropometric measurements, an incremental cycle ergometer test and a 30 min laboratory time-trial. The mountain bikers were lighter (65.3 - 6.5 vs 74.7 - 3.8 kg, P = 0.01; mean - s ) and leaner than the road cyclists (sum of seven skinfolds: 33.9 - 5.7 vs 44.5 - 10.8 mm, P = 0.04). The mountain bikers produced higher power outputs relative to body mass at maximal exercise (6.3 - 0.5 vs 5.8 - 0.3 W·kg -1 , P = 0.03), at the lactate threshold (5.2 - 0.6 vs 4.7 - 0.3 W·kg -1 , P = 0.048) and during the 30 min time-trial (5.5 - 0.5 vs 4.9 - 0.3 W·kg -1 , P = 0.02). Similarly, peak oxygen uptake relative to body mass was higher in the mountain bikers (78.3 - 4.4 vs 73.0 - 3.4 ml·kg -1 ·min -1 , P = 0.03). The results indicate that high power-to-weight characteristics are important for success in mountain biking. The mountain bikers possessed similar anthropometric and physiological characteristics to previously studied road cycling uphill specialists.  相似文献   

6.
We have previously shown that single-leg training results in improved endurance for exercise with the untrained leg (UTL) as well as for exercise with the trained leg (TL). The purpose of this study was to see whether the improved endurance of the untrained leg could be explained on the basis of changes in muscle metabolism. Exercise time to exhaustion at 80% of maximum oxygen uptake (VO2 max) was determined for each leg separately, pre- and post-training. Muscle metabolite concentrations were measured pre- and post-training in biopsy samples obtained immediately before this endurance test and at the pre-training point of exhaustion (END1). After six weeks of single-leg training endurance time was increased for both the UTL and the TL (UTL 34.0 +/- 16.4 min vs 97.9 +/- 26.3 min, P less than 0.01; TL 28.3 +/- 10.1 min vs 169.0 +/- 32.6 min, P less than 0.01). No changes in muscle metabolite concentrations were found in resting muscle. Training increased muscle ATP (P less than 0.05) and glycogen (P less than 0.01) concentrations and decreased muscle lactate concentration (P less than 0.05) in the TL at END1. No significant changes in muscle metabolite concentrations were found for the UTL. The improved endurance of the contralateral limb after single-leg training could not be explained on the basis of changes in muscle metabolism.  相似文献   

7.
The purpose of the study was to determine the anthropological status of elite male and female speed skaters, who were members of the 1985-7 Canadian national teams. The data were compared to those for a control group of University students. The subjects were 8 males and 6 females between 19 and 27 years of age. Nine breadth, 14 girth, 16 length and 15 skinfold measurements were used to compute parameters of body build and the composition; corrected diameters, masses, volumes and fat-free volumes of the upper arm, forearm, thigh and calf. The speed skaters were found to be similar in body height and mass (males: 178 +/- 7.6 cm and 75.5 +/- 5.5 kg, females: 165.8 +/- 3.8 cm and 62.3 +/- 5.8 kg) to the student controls, but they had relatively and absolutely shorter legs and longer trunks. The speed skaters had a lower amount of body fat and higher FFM than their respective student controls and significantly greater relative (P less than or equal to 0.01) and absolute (P less than or equal to 0.05) total muscle mass. Analysis of composition within segments indicated that the additional muscle mass is located entirely in the lower extremity. The volume and mass of the thigh was greater (P less than or equal to 0.01 for the males) than that of the respective controls while the estimated volume of fat was lower. The female speed skaters were found to have more fat on their thigh than either the male speed skaters or male controls. The corrected diameter and mass of the thigh were greater (with respect to the sex) than those reported for 400 m sprinters, marathon runners, cross-country skiers and figure skaters. The results of the initial assessment were compared to the two consecutive tests of the men's team (conducted 8 and 12 months later) and to one repeated test of the women's team (3 months later). Changes were recorded in skinfold measurements and the muscle component of the thigh.  相似文献   

8.
The relationships between muscle fibre characteristics and the physical performance capacity of trained athletic boys (aged 11-13 years) were studied over 2 days. The subjects were divided into two groups according to muscle fibre distribution. The 'fast' group (FG) comprised 10 subjects (sprinters, weightlifters, tennis players) with more than 50% fast-twitch fibres (type II), and the 'slow' group (SG) comprised 8 subjects (endurance runners, tennis players, one weightlifter) with more than 50% slow-twitch fibres (type I) in their vastus lateralis muscle. The 'fast' group had 59.2 +/- 6.3% and the 'slow' group had 39.4 +/- 9.8% type II fibres. Other clear differences (P less than 0.05-0.01) between the groups were observed as regards reaction time, rate of force development and rise of the body's centre of gravity in the squatting jump. For these variables, the 'fast' group was superior to the 'slow' group. Muscle fibre distribution (% type II) correlated (P less than 0.05-0.01) negatively with reaction time. Muscle fibre area (% type II) correlated negatively with reaction time (P less than 0.05-0.001) and positively with chronological age (P less than 0.05) height (P less than 0.05), mass (P less than 0.001), serum testosterone (P less than 0.05), force production (P less than 0.05-0.01) and blood lactate (P less than 0.05) in the 60-s maximal anaerobic test. There were no significant correlations between muscle fibre characteristics and maximal oxygen uptake. The present study assumes that heredity partly affects the selection of sporting event. Growth, development and training are associated with muscle fibre area, which affects the physical performance capacity of the neuromuscular system in trained young boys.  相似文献   

9.
The purpose of this study was to compare the maximal exercise performance during cycle ergometry of 34 men and 47 women. External peak power output (OPP) and optimized pedalling rate (ORPM) were calculated from data gathered during an optimization procedure performed on a friction braked cycle ergometer. In addition, lean leg volume (LLV) and lean upper leg volume (LULV) were determined using an anthropometric technique. Both OPP and ORPM were greater in men than in women (1007 +/- 135 vs 673 +/- 109 W and 119.5 +/- 7.0 vs 104.5 +/- 8.4 rev min-1, respectively; P less than 0.001). The LLV and LULV were also greater in men than in women (7.41 +/- 0.82 vs 5.19 +/- 0.85 l and 4.96 +/- 0.63 vs 3.35 +/- 0.62 l, respectively; P less than 0.001). The ratio standards OPP/LLV and OPP/LULV did not differ significantly between men and women (136.3 +/- 14.7 vs 131.0 +/- 20.6 W l-1 and 204.4 +/- 27.1 vs 204.4 +/- 37.0 W l-1, respectively; P greater than 0.05). Peak power output was related to each of the anthropometric indices in both men and women (LLV:r = 0.614 and 0.527, P less than 0.001; LULV:r = 0.489 and 0.396, P less than 0.01). Analysis of covariance revealed no significant differences between the groups in the variance about regression and the regression coefficients (P greater than 0.05), but the elevation of the regression lines did differ (P less than 0.001). The results suggest that there are differences between maximal exercise performance in men and women that are independent of estimated lean leg volume. They also demonstrate that, in this case, consideration of ratio standards is misleading and that a comparison of regression standards is more appropriate.  相似文献   

10.
This study compared the neuromuscular, metabolic and hormonal profiles of trained prepubescent tennis players and an untrained group. The boys in the experimental group (n = 9; mean age +/- S.D. = 11.4 +/- 0.5 years) had participated in tennis training for 2.3 +/- 1.0 years and the boys in the control group (n = 9; mean age +/- S.D. = 10.9 +/- 0.4 years) were normal active volunteers. The tennis players were found to be physically more active than the controls when the comparison was made for either 1 year (4.9 +/- 1.8 vs 2.6 +/- 2.5 times per week; P less than 0.05) or for 1 week (3.4 +/- 1.2 vs 0.4 +/- 0.5 times; P less than 0.001) preceding the tests. Choice reaction time was significantly (P less than 0.01) shorter in the experimental group (258 +/- 16 ms) than in the control group (344 +/- 81 ms). Dropping height in the best drop jump was significantly (P less than 0.05) higher in the tennis players (0.46 +/- 0.19 m) than in the control boys (0.27 +/- 0.10 m). The tennis players had significantly lower oxygen consumption at the 'anaerobic threshold' than the controls (P less than 0.05). There were no significant differences between the groups in serum hormone levels. The small differences that existed may have been caused by active participation in sport by the tennis players.  相似文献   

11.
The aim of this study was to compare the somatotype and size of elite female basketball players in terms of playing position and team performance. Anthropometry and somatotype data were collected on 168 players from 14 countries before the Women's World Basketball Championship, Australia, 1994. There were 64 guards (mean +/- s: age 25.4 +/- 3.3 years, height 1.72 +/- 0.06 m, mass 66.1 +/- 6.2 kg, somatotype = 2.9-3.9-2.6), 57 forwards (age 25.2 +/- 3.8 years, height 1.81 +/- 0.06 m, mass 73.3 +/- 5.9 kg, somatotype = 2.8-3.5-3.2) and 47 centres (age 24.1 +/- 3.1 years, height 1.90 +/- 0.06 m, mass 82.6 +/- 8.2 kg, somatotype = 3.2-3.1-3.4). Mean somatotypes by position were significantly different (F = 7.73, P < 0.01). Guards had greater mesomorphy than centres and less ectomorphy than forwards and centres. When discriminant function analysis was applied to endomorphy, mesomorphy, ectomorphy, age, height and mass, only height, mass and ectomorphy entered (Wilks' lambda = 0.351, F = 31.40, P < 0.000), 70% of the variance was accounted for, and 72% of players were correctly classified. In the four top versus four bottom teams, guards were taller and more ectomorphic, forwards were taller, with lower mesomorphy and higher ectomorphy, and centres did not differ. Thus there are some differences in somatotypes by position and team placing, but the combination of height, mass and ectomorphy provide the best differentiation by position.  相似文献   

12.
In this study, we investigated resting left ventricular dimensions and function in trained female rowers, canoeists and cyclists. In male populations, such athletes have demonstrated the largest left ventricular wall thicknesses and cavity dimensions. Echocardiograms were analysed from 24 athletes (rowers and canoeists, n = 12; cyclists, n = 12) and 21 age-matched controls to measure left ventricular end-diastolic dimension and volume, and septal (ST) and posterior wall (PWT) thicknesses. Left ventricular mass was calculated from M-mode data. Systolic and diastolic function were calculated from M-mode and Doppler echocardiography, respectively. Height, body mass, body surface area and fat-free mass were determined anthropometrically. The athletes were well matched with the controls for all anthropometric variables except fat-free mass (rowers and canoeists 49.7+/-3.6 kg, cyclists 48.0+/-3.8 kg, controls 45.0+/-5.4 kg; P < 0.05). The left ventricular end-diastolic dimension, mass and volume, and septal and posterior wall thicknesses, were all significantly greater in the athletes than the controls (P < 0.05). These differences persisted (except for left ventricular end-diastolic dimension) even after allometric adjustment for group differences in fat-free mass. Stroke volume was larger (rowers and canoeists 102+/-13 ml, cyclists 103+/-16 ml, controls 80+/-15 ml; P < 0.05) in both groups of athletes but all other functional data were similar between groups. As in male athletes, female rowers, canoeists and cyclists displayed significantly larger left ventricular cavity dimensions and wall thicknesses than controls.  相似文献   

13.
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption (VO2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the VO2peak power output; and (3) a 40-km cycle time-trial. There were no differences in VO2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at VO2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l x min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l x min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.  相似文献   

14.
Six games players (GP) and six endurance-trained runners (ET) completed a standardized multiple sprint test on a non-motorized treadmill consisting of ten 6-s all-out sprints with 30-s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 +/- 114 vs 777 +/- 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 +/- 0.3 vs 6.71 +/- 0.3 m s-1, N.S.), but had a greater decrement in mean power output than endurance-trained runners (GP vs ET: 29.3 +/- 8.1% vs 14.2 +/- 11.1%, P less than 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 +/- 1.9 vs 12.4 +/- 1.7 mM, P less than 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 +/- 0.08 vs 0.28 +/- 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P less than 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P less than 0.01). The average increase in oxygen uptake above pre-exercise levels during the sprint test was greater for endurance-trained athletes than for the games players (ET vs GP: 35.0 +/- 2.2 vs 29.6 +/- 3.0 ml kg-1 min-1, P less than 0.05), corresponding to an average oxygen uptake per sprint (6-s sprint and 24 s of subsequent recovery) of 67.5 +/- 2.9% and 63.0 +/- 4.5% VO2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre-exercise values during the sprint test and mean speed fatigue (r = -0.68, P less than 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

15.
The purpose of this study was to test the hypothesis that increased availability of blood-borne glucose would improve endurance after carbohydrate loading. A single-leg exercise model was employed, taking advantage of the fact that supercompensation of muscle glycogen occurs only in a previously exercised limb. Endurance time to exhaustion at 70% of maximal oxygen uptake (VO2 max) was determined for 11 males and three females who were then allocated to a control group or a high-carbohydrate (CHO) group. For 3 days following Test 1 the control group maintained a prescribed normal diet whilst the CHO group increased the proportion of energy derived from carbohydrate (62.1 +/- 4.3% cf. 43.9 +/- 2.0%, P less than 0.01). The endurance test was then repeated using the leg that was inactive during Test 1. Endurance time was increased on Test 2 (123.7 +/- 43.2 min cf. 98.5 +/- 21.9 min, P less than 0.05 one-tailed test) for the CHO group but not for the control group (101.8 +/- 21.7 min cf. 107.5 +/- 9.1 min, NS). There was no indication of enhanced carbohydrate metabolism during Test 2 for the CHO group but mean heart rate was lower during Test 2 than during Test 1 (145 +/- 14 beat min-1 cf. 152 +/- 12 beat min-1, P less than 0.05). These results suggest that the prior consumption of a high-carbohydrate diet improves endurance during high-intensity cycling with a limb with normal muscle glycogen concentration.  相似文献   

16.
This study investigated gross efficiency changes in a group of 60 adult males (mean age 39.2 +/- 1.2 years) resulting from endurance training and age-related responses to such training in sub-groups (each n = 20) of younger (30.7 +/- 0.7 years), intermediate (38.3 +/- 0.5 years) and older (48.6 +/- 1.1 years) subjects. Gross efficiency (%) was calculated from work output, oxygen consumption and RER energy equivalents following 10 min standard cycle ergometry exercise at 100 W and 50 rev min-1. Measurements were made at pre-, mid- and post-8 months of training, which involved progressive walking/jogging activities designed to enhance endurance capacity. In the total group, VO2 decreased pre- to post-training from 2.15 +/- 0.02 to 1.93 +/- 0.01 1 min-1 (P less than 0.01). In the sub-groups, both the younger and older subjects showed a significantly reduced VO2, from 2.17 +/- 0.01 to 1.98 +/- 0.04 1 min-1 and 2.05 +/- 0.08 to 1.86 +/- 0.03 1 min-1 respectively (P less than 0.05), but no significant changes were noted at mid-training. In the intermediate age subjects, while there were trends towards a reduced VO2, none was significant. The ANOVA revealed increased mean gross efficiency in the total group from pre- (14.3 +/- 0.1%) to post- (15.5 +/- 0.2%) (P less than 0.05) but not at mid-training (14.8 +/- 0.2%). While similar trends were observed in the sub-groups, gross efficiency increases were not significant, although changes in gross efficiency were reflected in VO2. The findings suggest that during standardized exercise, oxygen cost may be reduced and gross efficiency increased in adult males following endurance training and that such changes may take place over a variety of age ranges.  相似文献   

17.
Abstract

The effects of saddle height on pedal forces and joint kinetics (e.g. mechanical work) are unclear. Therefore, we assessed the effects of saddle height on pedal forces, joint mechanical work and kinematics in 12 cyclists and 12 triathletes. Four sub-maximal 2-min cycling trials (3.4 W/kg and 90 rpm) were conducted using preferred, low and high saddle heights (±10° knee flexion at 6 o'clock crank position from the individual preferred height) and an advocated optimal saddle height (25° knee flexion at 6 o'clock crank position). Right pedal forces and lower limb kinematics were compared using effect sizes (ES). Increases in saddle height (5% of preferred height, ES=4.6) resulted in large increases in index of effectiveness (7%, ES=1.2) at the optimal compared to the preferred saddle height for cyclists. Greater knee (11–15%, ES=1.6) and smaller hip (6–8%, ES=1.7) angles were observed at the low (cyclists and triathletes) and preferred (triathletes only) saddle heights compared to high and optimal saddle heights. Smaller hip angle (5%, ES=1.0) and greater hip range of motion (9%, ES=1.0) were observed at the preferred saddle height for triathletes compared to cyclists. Changes in saddle height up to 5% of preferred saddle height for cyclists and 7% for triathletes affected hip and knee angles but not joint mechanical work. Cyclists and triathletes would opt for saddle heights <5 and <7%, respectively, within a range of their existing saddle height.  相似文献   

18.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO2max = 64 +/- 2 ml x kg(-1) x min(-1); mean +/- s(x)) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group (P < or = 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 +/- 4% and 18 +/- 4% respectively; compared with placebo, P < or = 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 +/- 30 and 115 +/- 38 s (3.8 +/- 1.7% and 4.6 +/- 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

19.
The aim of the present study was to determine whether 4 months of intensified training would result in modified plasma insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 1 (IGFBP-1) or IGFBP-3 in eight competitive cyclists and eight sedentary individuals and to define the relationships of these factors with glucose disposal. Insulin sensitivity and glucose effectiveness--that is, the fractional disappearance of glucose independent of any change in insulinaemia--were measured with the minimal model (mathematical analysis of frequently sampled intravenous glucose tolerance test). Both glucose effectiveness and insulin sensitivity were higher in the cyclists than in the sedentary individuals, but did not increase further with training. IGF-I was higher in the cyclists than in the sedentary group only after raining (P < 0.05). Plasma IGFBP-1 and IGFBP-3 increased after training (38 and 20%, respectively; P < 0.05) in the cyclists and were higher than in the sedentary individuals (P < 0.05). IGF-I was negatively correlated with insulin sensitivity before and after training (r = -0.66 and -0.67, respectively; P < 0.05) and IGFBP-1 was negatively correlated with glucose effectiveness before andafter training (r = -0.68 and -0.77, respectively; P < 0.05). Our results show that strenuous endurance training improves the somatotrope axis (growth hormone-IGF) and that IGFBP-1 may be involved in glucose homeostasis, possibly by limiting the exercise-induced increase in glucose disposal, in competitive cyclists.  相似文献   

20.
The jump performance of ten youth soccer players (mean age 15.8 years, s= 0.4) was assessed before and after 42 min of soccer-specific exercise performed on a non-motorized treadmill. A squat, countermovement, and drop jump were performed on a force platform and simultaneously surface EMG activity of four lower limb muscles was collected. Jump height deteriorated across all conditions with mean reductions of - 1.4 cm (s = 1.6; P < 0.05), - 3.0 cm (s = 2.9; P < 0.05), and -2.3 cm (s = 1.7; P < 0.01) in the squat, countermovement, and drop jump respectively. The impact force in the drop jump was the only force variable to show a significant change with fatigue (P < 0.05). Following the prolonged exercise, reductions in total muscle activity were non-significant for the squat jump, approached significance for the counter-ovement jump (P = 0.07), and achieved significance for the drop jump (P < 0.05). The results showed that completing soccer-specific exercise reduced performance in all jump tasks. Reductions in muscle activity were greatest for the drop jump, suggesting an influence of muscle stretch and loading on reduced muscle activity when fatigued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号