首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

3.
Abstract

The purpose of this study was to examine the psychosocial correlates of cardiorespiratory fitness ([Vdot]O2peak) and muscle strength in overweight and obese sedentary post-menopausal women. The study population consisted of 137 non-diabetic, sedentary overweight and obese post-menopausal women (mean age 57.7 years, s = 4.8; body mass index 32.4 kg · m?2, s = 4.6). At baseline we measured: (1) body composition using dual-energy X-ray absorptiometry; (2) visceral fat using computed tomography; (3) insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp; (4) cardiorespiratory fitness; (5) muscle strength using the leg press exercise; and (6) psychosocial profile (quality of life, perceived stress, self-esteem, body-esteem, and perceived risk for developing chronic diseases) using validated questionnaires. Both [Vdot]O2peak and muscle strength were significantly correlated with quality of life (r = 0.29, P < 0.01 and r = 0.30, P < 0.01, respectively), and quality of life subscales for: physical functioning (r = 0.28, P < 0.01 and r = 0.22, P < 0.05, respectively), pain (r = 0.18, P < 0.05 and r = 0.23, P < 0.05, respectively), role functioning (r = 0.20, P < 0.05 and r = 0.24, P < 0.05, respectively), and perceived risks (r = ?0.24, P < 0.01 and r = ?0.30, P < 0.01, respectively). In addition, [Vdot]O2peak was significantly associated with positive health perceptions, greater body esteem, and less time watching television/video. Stepwise regression analysis showed that quality of life for health perceptions and for role functioning were independent predictors of [Vdot]O2peak and muscle strength, respectively. In conclusion, higher [Vdot]O2peak and muscle strength are associated with a favourable psychosocial profile, and the psychosocial correlates of [Vdot]O2peak were different from those of muscle strength. Furthermore, psychosocial factors could be predictors of [Vdot]O2peak and muscle strength in our cohort of overweight and obese sedentary post-menopausal women.  相似文献   

4.
5.
Objective: The purpose of the present study was to analyze whether improvements in fast walking speed induced by resistance training (RT) are associated with changes in body composition, muscle quality, and muscular strength in older women. Methods: Twenty-three healthy older women (69.6?±?6.4 years, 64.95?±?12.9?kg, 1.55?±?0.07?m, 27.06?±?4.6?kg/m²) performed a RT program for 8 weeks consisting of 8 exercises for the whole body, 3 sets of 10–15 repetitions maximum, 3 times a week. Anthropometric, body composition (fat-free mass [FFM], skeletal muscle mass [SMM], legs lean soft tissue [LLST], fat mass), knee extension muscular strength (KE1RM), muscle quality index (MQI [KE1RM/LLST]), and 10-meter walking test (10-MWT) were performed before and after the intervention. Results: Significant (P?<?.05) changes were observed from pre- to post-training for FFM (+1.6%), MQI (+7.2%), SMM (+2.4%), LLST (+1.8%), KE1RM (+8.6%), fat mass (?1.4%), and time to perform 10-MWT (?3.7%). The percentage change in 10-MWT was significantly associated with percentage change in MQI (r?=??0.46, P?=?.04) and KE1RM (r?=??0.45, P?=?.04), however not associated percentage of changes in SMM (r?=?0.01, P?=?.97), LLST (r?=??0.22, P?=?.33), and body fat (r?=?0.10, P?=?.66). Conclusion: We conclude that the improvement in the 10-MWT after an 8-week RT program is associated with increases in lower limb muscular strength and muscle quality, but not with muscle mass or body fat changes in older women.  相似文献   

6.
ABSTRACT

Elite cyclists have often a limited period of time available during their short preparation phase to focus on development of maximal strength; therefore, the purpose of the present study was to investigate the effect of 10-week heavy strength training on lean lower-body mass, leg strength, determinants of cycling performance and cycling performance in elite cyclists. Twelve cyclists performed heavy strength training and normal endurance training (E&S) while 8 other cyclists performed normal endurance training only (E). Following the intervention period E&S had a larger increase in maximal isometric half squat, mean power output during a 30-s Wingate sprint (P < 0.05) and a tendency towards larger improvement in power output at 4 mmol ? L?1 [la?] than E (P = 0.068). There were no significant difference between E&S and E in changes in 40-min all-out trial (4 ± 6% vs. ?1 ± 6%, respectively, P = 0.13). These beneficial effects may encourage elite cyclists to perform heavy strength training and the short period of only 10 weeks should make it executable even in the compressed training and competition schedule of elite cyclists.  相似文献   

7.
This study aims to determine if biomechanically informed injury prevention training can reduce associated factors of anterior cruciate ligament injury risk among a general female athletic population. Female community-level team sport athletes, split into intervention (n = 8) and comparison groups (n = 10), completed a sidestepping movement assessment prior to and following a 9-week training period, in which kinetic, kinematic and neuromuscular data were collected. The intervention group completed a biomechanically informed training protocol, consisting of plyometric, resistance and balance exercises, adjunct to normal training, for 15–20 min twice a week. Following the 9-week intervention, total activation of the muscles crossing the knee (n = 7) decreased for both the training (? ?15.02%, d = 0.45) and comparison (? ?9.68%, d = 0.47) groups. This decrease was accompanied by elevated peak knee valgus (? +27.78%, d = ?0.36) and internal rotation moments (? +37.50%, d = ?0.56) in the comparison group, suggesting that female community athletes are at an increased risk of injury after a season of play. Peak knee valgus and internal rotation knee moments among athletes who participated in training intervention did not change over the intervention period. Results suggest participation in a biomechanically informed training intervention may mitigate the apparent deleterious effects of community-level sport participation.  相似文献   

8.
Abstract

The effect of altering the rest period on adaptations to high-repetition resistance training is not well known. Eighteen active females were matched according to leg strength and repeated-sprint ability and randomly allocated to one of two groups. One group performed resistance training with 20-s rest intervals between sets, while the other group employed 80-s rest intervals between sets. Both groups performed the same total training volume and load. Each group trained 3 days a week for 5 weeks [15- to 20-repetition maximum (RM), 2 – 5 sets]. Repeated-sprint ability (5×6-s maximal cycle sprints), 3-RM leg press strength, and anthropometry were determined before and after each training programme. There was a greater improvement in repeated-sprint ability after training with 20-s rest intervals (12.5%) than after training with 80-s rest intervals (5.4%) (P = 0.030). In contrast, there were greater improvements in strength after training with 80-s rest intervals (45.9%) than after training with 20-s rest intervals (19.6%) (P = 0.010). There were no changes in anthropometry for either group following training. These results suggest that when training volume and load are matched, despite a smaller increase in strength, 5 weeks of training with short rest periods results in greater improvements in repeated-sprint ability than the same training with long rest periods.  相似文献   

9.
Abstract

The aim of this study was to examine the effect of concentric warm-up exercise on eccentrically induced changes in muscle strength, range of motion, and soreness of the elbow flexors. Ten resistance-exercise naïve participants performed intermittent incremental eccentric actions (42 in total) of the elbow flexor muscles of each arm to induce muscle damage. The arms of each participant were randomly assigned either to a pre-eccentric exercise warm-up involving intermittent concentric exercise (warm-up) or no prior exercise (control). Strength, range of motion, and ratings of soreness were recorded before and 1, 2, 3, 4, and 7 days after exercise. Strength, range of motion, and soreness during muscular movements changed over time (P at most 0.01; Cohen's d at least 0.51, medium). There was an interaction (P < 0.001) for strength, showing a smaller reduction after exercise for warm-up than control (P < 0.001, d = 2.44, large effect). The decreased range of motion was less for warm-up than control for the arm while extended (P < 0.001), flexed (P = 0.002), and relaxed (P = 0.004). Muscle soreness was reduced for the warm-up group, while the muscle was flexed, extended, and relaxed compared with control (P < 0.001). The results demonstrate that a concentric warm-up exercise attenuates the reduction in loss of strength, range of motion, and muscle soreness after eccentric-exercise-induced muscle damage and might allow higher intensities of training to be performed.  相似文献   

10.
Abstract

The purpose of this study was to evaluate the effects of moderate- to high-intensity resistance and concurrent training on inflammatory biomarkers and functional capacity in sedentary middle-aged healthy men. Participants were selected on a random basis for resistance training (n = 12), concurrent training (n = 11) and a control group (n = 13). They performed three weekly sessions for 16 weeks (resistance training: 10 exercises with 3 × 8–10 repetition maximum; concurrent training: 6 exercises with 3 × 8–10 repetition maximum, followed by 30 minutes of walking or running at 55–85% [Vdot]O2peak). Maximal strength was tested in bench press and leg press. The peak oxygen uptake ([Vdot]O2peak) was measured by an incremental exercise test. Tumour necrosis factor-α, interleukin-6 and C-reactive protein were determined. The upper- and lower-body maximal strength increase for both resistance (+42.52%; +20.9%, respectively) and concurrent training (+28.35%; +21.5%, respectively) groups (P = 0.0001).[Vdot]O2peak increased in concurrent training when comparing pre- and post-training (P = 0.0001; +15.6%). No differences were found in tumour necrosis factor-α and interleukin-6 for both groups after the exercise. C-reactive protein increased in resistance training (P = 0.004). These findings demonstrated that 16 weeks of moderate- to high-intensity training could improve functional capacity, but did not decrease inflammatory biomarkers in middle-aged men.  相似文献   

11.
Although it is clear that rowers have a large muscle mass, their distribution of muscle mass and which of the main motions in rowing mediates muscle hypertrophy in each body part are unclear. We examine the relationships between partial motion power in rowing and muscle cross-sectional area of the thigh, lower back, and upper arms. Sixty young rowers (39 males and 21 females) participated in the study. Joint positions and forces were measured by video cameras and rowing ergometer software, respectively. One-dimensional motion analysis was performed to calculate the power of leg drive, trunk swing, and arm pull motions. Muscle cross-sectional areas were measured using magnetic resonance imaging. Multiple regression analyses were carried out to determine the association of different muscle cross-sectional areas with partial motion power. The anterior thigh best explained the power demonstrated by leg drive (r 2 = 0.508), the posterior thigh and lower back combined best explained the power demonstrated by the trunk swing (r 2 = 0.493), and the elbow extensors best explained the power demonstrated by the arm pull (r 2 = 0.195). Other correlations, such as arm muscles with leg drive power (r 2 = 0.424) and anterior thigh with trunk swing power (r 2 = 0.335), were also significant. All muscle cross-sectional areas were associated with rowing performance either through the production of power or by transmitting work. The results imply that rowing motion requires a well-balanced distribution of muscle mass throughout the body.  相似文献   

12.
Abstract

The aim of the study was to assess the relationship between performance-based and laboratory tests for muscular strength and power assessment in older women. Thirty-two women aged 68.8 ± 2.8 years were recruited. All participants were asessed for: (a) two performance-based tests – the box-stepping test (mean 296 ± 51 J) and two-revolution maximum test (mean 7.1 ± 2 kg) performed while pedalling on a cycle ergometer; and (b) muscular function tests – maximal instantaneous peak power jumping on a force platform (mean 1528 ± 279 W); maximal voluntary contraction (MVC) during knee extension (mean 601 ± 571 N) and leg press (mean 626 ± 126 N), and leg press power (mean 483 ± 98 W) on a dynamometer. Using univariate analysis, performance-based tests were compared with laboratory muscle strength and power measurements. Muscle power correlated most strongly with the performance-based tests for both jumping and leg press power (r-values between 0.67 and 0.75; P < 0.01). The correlation with muscle strength measures ranged between 0.48 and 0.61 (P < 0.01). The proposed tests may have particular relevance in geriatric and rehabilitation environments as they represent an easy, practical, and inexpensive alternative for the assessment of muscular strength and power.  相似文献   

13.
ABSTRACT

The main purpose of this study was to compare the effects of resistance training (RT) performed with different training volumes on phase angle (PhA), body water components, and muscle quality (MQ) in untrained older adult women. A second purpose was to assess the relationship between PhA and MQ. Sixty-two older adult women (68.6 ± 5.0 years, 65.2 ± 13.3 kg, 156.1 ± 6.2 cm) were randomly assigned into one of the three groups: two training groups performed either 1 set (G1S) or 3 sets (G3S), or a control group (CG). Body water components and PhA were estimated by bioelectrical impedance (BIA). MQ was determined by dividing skeletal muscle mass estimated by dual-energy absorptiometry (DXA) by total muscle strength from three exercises. After the intervention period, both training groups demonstrated improvements (< 0.05) when compared with CON for intracellular water, total body water, PhA, and MQ. These results suggest that RT can improve PhA, body water components, and MQ after 12 weeks of RT in untrained older women, regardless of training volume. Furthermore, changes in MQ were positively correlated with changes in PhA (r = 0.60, P < 0.01).  相似文献   

14.
The aim of this study was to investigate the effects of strengthening and stretching exercises on running kinematics and kinetics in older runners. One hundred and five runners (55–75 years) were randomly assigned to either a strengthening (n = 36), flexibility (n = 34) or control (n = 35) group. Running kinematics and kinetics were obtained using an eight-camera system and an instrumented treadmill before and after the eight-week exercise protocol. Measures of strength and flexibility were also obtained using a dynamometer and inclinometer/goniometer. A time effect was observed for the excursion angles of the ankle sagittal (P = 0.004, d = 0.17) and thorax/pelvis transverse (P < 0.001, d = 0.20) plane. Similarly, a time effect was observed for knee transverse plane impulse (P = 0.013, d = 0.26) and ground reaction force propulsion (P = 0.042, d = ?0.15). A time effect for hip adduction (P = 0.006, d = 0.69), ankle dorsiflexion (P = 0.002, d = 0.47) and hip internal rotation (P = 0.048, d = 0.30) flexibility, and hip extensor (P = 0.001, d = ?0.48) and ankle plantar flexor (P = 0.01, d = 0.39) strength were also observed. However, these changes were irrespective of exercise group. The results of the present study indicate that an eight-week stretching or strengthening protocol, compared to controls, was not effective in altering age-related running biomechanics despite changes in ankle and trunk kinematics, knee kinetics and ground reaction forces along with alterations in muscle strength and flexibility were observed over time.  相似文献   

15.
Abstract

Elite badminton requires muscular endurance combined with appropriate maximal and explosive muscle strength. The musculature of the lower extremities is especially important in this context since rapid and forceful movements with the weight of the body are performed repeatedly throughout a match. In the present study, we examined various leg-strength parameters of 35 male elite badminton players who had been performing resistance exercises as part of their physical training for several years. The badminton players were compared with an age-matched reference group, the members of whom were physically active on a recreational basis, and to the same reference group after they had performed resistance training for 14 weeks. Maximal muscle strength of the knee extensor (quadriceps) and flexor muscles (hamstrings) was determined using isokinetic dynamometry. To measure explosive muscle strength, the contractile rate of force development was determined during maximal isometric muscle contractions. In general, the badminton players showed greater maximal muscle strength and contractile rate of force development than the reference group: mean quadriceps peak torque during slow concentric contraction: 3.69 Nm · kg?1, s=0.08 vs. 3.26 Nm · kg?1, s=0.8 (P<0.001); mean hamstring peak torque during slow concentric contraction: 1.86 Nm · kg?1, s=0.04 vs. 1.63 Nm · kg?1, s=0.04 (P<0.001); mean quadriceps rate of force development at 100 ms: 24.4 Nm · s?1·kg?1, s=0.5 vs. 22.1 Nm·s?1 · kg?1, s=0.6 (P<0.05); mean hamstring rate of force development at 100 ms: 11.4 Nm · s?1·kg?1, s=0.3 vs. 8.9 Nm · s?1 · kg?1, s=0.4 (P<0.05). However, after 14 weeks of resistance training the reference group achieved similar isometric and slow concentric muscle strength as the badminton players, although the badminton players still had a higher isometric rate of force development and muscle strength during fast (240° · s?1) quadriceps contractions. Large volumes of concurrent endurance training could have attenuated the long-term development of maximal muscle strength in the badminton players. The badminton players had a higher contractile rate of force development than the reference group before and after resistance training. Greater explosive muscle strength in the badminton players might be a physiological adaptation to their badminton training.  相似文献   

16.
Controversial results reported in past research pertaining to the effectiveness of sport-based physical activity interventions on weight loss. The purpose of this study was to assess the impact of sport-based physical activity intervention on body weight in children and adolescents using a meta-analysis. Academic Search Complete, Education Source, ERIC, Medline, ProQuest, PsycINFO and SportDiscus databases were searched from January 2000 to April 2015. Eighteen studies met following inclusion criteria: sport-based intervention studies; subjects aged 6–18 years; reported body weight; published in peer-reviewed journals written in English. The mean intervention duration was 17.72 weeks. The overall effect size (ES) was 0.52 (Cohen’s d (ES) = 0.52, 95% CI = 0.08, 0.95, P = 0.021), using a random effects model. Moderator analyses results showed that the Q statistic for the sport type (individual sport or team sport, Qbetween (Qb) = 14.52, df = 1, P = 0.001) and diet control (Qbetween (Qb) = 8.85, df = 1, P = 0.001), explained the heterogeneity of ESs. Our study showed that there was a moderate overall effect of sport-based physical activity intervention on body weight reduction. The team sport type (ES = 1.05, 95% CI = 0.44, 1.66) and diet control group (ES = 0.84, 95% CI = 0.26, 1.41) appeared to be more effective in reducing body weight.  相似文献   

17.
We tested a simple and compact device designed for manual resistance training in conditions of microgravity (Self-Powered Rope Trainer Duo (SPoRT Duo)) to increase muscle performance. Twenty-four participants (20.8 ± 2.1 years) were randomly assigned to a manual resistance group (n = 12) and a free-weight group (n = 12). Participants performed eight exercises (three sets; 8–12 efforts) either with free weights or the SPoRT Duo twice a week for 6 weeks. Maximal isometric force of trunk flexion, back extension and chest press increased (P at least 0.01, d at least 0.52) both in the manual resistance group (18.4% ± 15.0%; 32.7% ± 22.7%; 15.3% ± 9.7%) and free-weight group (18.0% ± 13.9%; 26.6% ± 28.9%; 13.3% ± 7.6%). The change in maximal isometric force of wide grip row in both groups (d at best 0.38) did not reach statistical significance (P at best 0.08). The squat one-repetition-maximum increased in the manual resistance group (29.8% ± 22.1%) and the free-weight group (32.4% ± 26.6%). Jump height, determined by a jump-and-reach test, increased in the free-weight group (9.8% ± 13.2%) but not in the manual resistance group (2.0% ± 8.5%). Manual resistance training was equally effective in increasing strength as traditional resistance training with free weights. This apparatus is a useful addition to current in-flight exercise systems.  相似文献   

18.
This study aims to (1) determine whether isometric training at a short vs. long quadriceps muscle length affects concentric torque production; (2) examine the relationship between muscle hypertrophy and concentric torque; and (3) determine whether changes in fascicle length are associated with changes in concentric torque.

Sixteen men performed isometric training at a short (SL, n = 8) or a long muscle length (LL, n = 8). Changes in maximal concentric torque were measured at 30, 60, 90, 120, 180, 240 and 300 rad · s?1. The relationships between the changes in concentric torque, cross-sectional area, volume and fascicle length were tested.

Concentric torque increased significantly after training only in LL and at angular velocities of 30 and 120 rad · s?1 by 12–13% (P < 0.05). Muscle size increased in LL only, the changes were correlated (r = 0.73–0.93, P < 0.05) with the changes in concentric torque. Vastus lateralis (VL) fascicle length increased in both groups (5.4 ± 4.9%, P = 0.001) but the change was not correlated with changes in concentric torque in either group.

Isometric training-induced increases in muscle size and concentric torque were best elicited by training at long muscle lengths. These results highlight a clear muscle length dependence of isometric training on dynamic torque production.  相似文献   

19.
Two experiments (n = 10) were conducted to determine the effects of roller massager (RM) on ankle plantar flexor muscle recovery after exercise-induced muscle damage (EIMD). Experiment 1 examined both functional [i.e., ankle plantar flexion maximal isometric contraction and submaximal (30%) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and medial gastrocnemius pain pressure threshold] and morphological [cross-sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1, 24, 48, and 72 h after an EIMD stimulus. Experiment 2 examined medial gastrocnemius deoxyhaemoglobin concentration kinetics before and 48 h after EIMD. Participants performed both experiments twice: with (RM) and without (no-roller massager; NRM) the application of a RM (6 × 45 s; 20-s rest between sets). RM intervention did not alter the functional impairment after EIMD, as well as the medial gastrocnemius morphology and oxygenation kinetics (P > 0.05). Although, an acute increase of ipsilateral (RM = + 19%, NRM = ?5%, P = 0.032) and a strong tendency for contralateral (P = 0.095) medial gastrocnemius pain pressure threshold were observed. The present results suggest that a RM has no effect on plantar flexors performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness).  相似文献   

20.
The relative effects of resistance training (RT) upon muscle fitness and immune function among HIV-infected patients are uncertain. The purpose of this study was to perform a meta-analysis to determine the effects of RT upon muscle strength, muscle mass and CD4 cells count and to identify potential moderators of those outcomes in HIV-infected patients. Meta-analyses use random or fixed-effects model depending on the heterogeneity of effect sizes, complemented with Hedge’s g correction factor. Thirteen trials were meta-analysed. Overall, RT increased muscle strength (35.5%, < 0.01) and CD4 cell count (26.1%, = 0.003) versus controls (0.03), but not muscle mass (= 0.051). Meta-regression followed by subgroup moderator analysis showed that gains in muscle strength followed a dose–response pattern with largest increase detected among trials with longer (24 weeks; 49.3%) than shorter intervention (<12 weeks; 39%), higher (Physiotherapy Evidence-Based Database [PEDro] scale = 6; 38.3%) than lower (PEDro = 5; 28.1%) quality, and longer (12 months; 59.7%) than shorter time under highly active antiretroviral therapy (HAART) (<6 months; 37.1%), (< 0.01). RT appears to be efficacious to improve muscular strength (~35.5%) and CD4 cell count (~26.1%), but not muscle mass of HIV-infected patients. Effects upon strength were greater in studies with higher quality and among trials with longer RT and HAART.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号