首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles.  相似文献   

2.
Abstract

The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67–73 years) and 17 young adults (age 26–36 years) ran at 3.1 m · s?1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33°; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12°; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (?5.8 vs. ?1.0°; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

3.
Stereo camera systems have been used to track markers attached to a racket, allowing its position to be obtained in three-dimensional (3D) space. Typically, markers are manually selected on the image plane, but this can be time-consuming. A markerless system based on one stationary camera estimating 3D racket position data is desirable for research and play. The markerless method presented in this paper relies on a set of racket silhouette views in a common reference frame captured with a calibrated camera and a silhouette of a racket captured with a camera whose relative pose is outside the common reference frame. The aim of this paper is to provide validation of these single view fitting techniques to estimate the pose of a tennis racket. This includes the development of a calibration method to provide the relative pose of a stationary camera with respect to a racket. Mean static racket position was reconstructed to within ±2 mm. Computer generated camera poses and silhouette views of a full size racket model were used to demonstrate the potential of the method to estimate 3D racket position during a simplified serve scenario. From a camera distance of 14 m, 3D racket position was estimated providing a spatial accuracy of 1.9 ± 0.14 mm, similar to recent 3D video marker tracking studies of tennis.  相似文献   

4.
The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many “very likely” to “almost certain” relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.  相似文献   

5.
This study applied a vision-based tracking approach to the analysis of articulated, three-dimensional (3D) whole-body human movements. A 3D computer graphics model of the human body was constructed from ellipsoid solids and customized to two gymnasts for size and colour. The model was used in the generation of model images from multiple camera views with simulated environments based on measurements taken on each of three synchronized video cameras and the lighting sources present in the original recording environment. A hierarchical procedure was used whereby the torso was tracked initially to establish whole-body position and orientation and subsequently body segments were added successively to the model to establish body configuration. An iterative procedure was used at each stage to optimize each new set of variables using a score based on the RGB colour difference between the model images and video images at each stage. Tracking experiments were carried out on movement sequences using both synthetic and video image data. Promising qualitative results were obtained with consistent model matching in all sequences, including sequences involving whole-body rotational movements. Accurate tracking results were obtained for the synthetic image sequences. Automatic tracking results for the video images were also compared with kinematic estimates obtained via manual digitization and favourable comparisons were obtained. It is concluded that with further development this model-based approach using colour matching should provide the basis of a robust and accurate tracking system applicable to data collection for biomechanics studies.  相似文献   

6.
Abstract

Kinematic analysis of swimming is of interest to improve swimming performances. Although the video recordings of underwater swimmers are commonly used, the available methodologies are rarely precise enough to adequately estimate the three dimensional (3D) joint kinematics. This is mainly due to difficulties in obtaining the required kinematic parameters (anatomical landmarks, joint centres and reference frames) in the swimming environment. In this paper we propose a procedure to investigate the right upper limb’s 3D kinematics during front crawl swimming in terms of all elbow and shoulder degrees of freedom (three rotations of the shoulder, two of the elbow). The method is based upon the Calibrated Anatomical Systems Technique (CAST), a technique widely used in clinics, which allows estimation of anatomical landmarks of interest even when they are not directly visible. An automatic tracking technique was adopted. The intra-operator repeatability of the manual tracking was also assessed. The root mean squared difference of three anatomical landmarks, processed five times, is always lower than 8 mm. The mean of the root mean squared difference between trajectories obtained with the different methodologies was found to be lower than 20 mm. Results showed that complete 3D kinematics of at least twice as many frames than without CAST can be reconstructed faster and more precisely.  相似文献   

7.
ABSTRACT

Professional American football games are recorded in digital video with multiple cameras, often at high resolution and high frame rates. The purpose of this study was to evaluate the accuracy of a videogrammetry technique to calculate translational and rotational helmet velocity before, during and after a helmet impact. In total, 10 football impacts were staged in a National Football League (NFL) stadium by propelling helmeted 50th percentile male crash test dummies into each other or the ground at speeds and orientations representative of concussive impacts for NFL players. The tests were recorded by experienced sports film crews to obtain video coverage and quality typically available for NFL games. A videogrammetry procedure was used to track the position and rotation of the helmet throughout the relevant time interval of the head impact. Compared with rigidly mounted retroreflective marker three dimensional (3-D) motion tracking that was concurrently collected in the experiments, videogrammetry accurately calculated changes in translational and rotational velocity of the helmet using high frame rate (two cameras at 240 Hz) video (7% and 15% error, respectively). Low frame rate (2 cameras at 60 Hz) video was adequate for calculating pre-impact translational velocity but not for calculating the translational or rotational velocity change of the helmet during impact.  相似文献   

8.
The aims of this study were to describe muscular activation patterns and kinematic variables during the complete stroke cycle (SC) and the different phases of breaststroke swimming at submaximal and maximal efforts. Surface electromyography (sEMG) was collected from eight muscles in nine elite swimmers; five females (age 20.3 ± 5.4 years; Fédération Internationale de Natation [FINA] points 815 ± 160) and four males (27.7 ± 7.1 years; FINA points 879 ± 151). Underwater cameras were used for 3D kinematic analysis with automatic motion tracking. The participants swam 25 m of breaststroke at 60%, 80% and 100% effort and each SC was divided into three phases: knee extension, knee extended and knee flexion. With increasing effort, the swimmers decreased their SC distance and increased their velocity and stroke rate. A decrease during the different phases was found for duration during knee extended and knee flexion, distance during knee extended and knee angle at the beginning of knee extension with increasing effort. Velocity increased for all phases. The mean activation pattern remained similar across the different effort levels, but the muscles showed longer activation periods relative to the SC and increased integrated sEMG (except trapezius) with increasing effort. The muscle activation patterns, muscular participation and kinematics assessed in this study with elite breaststroke swimmers contribute to a better understanding of the stroke and what occurs at different effort levels. This could be used as a reference for optimising breaststroke training to improve performance.  相似文献   

9.
The purpose of this study was to determine whether joint velocities and segmental angular velocities are significantly correlated with ball velocity during an instep soccer kick. We developed a deterministic model that related ball velocity to kicking leg and pelvis motion from the initiation of downswing until impact. Three-dimensional videography was used to collect data from 16 experienced male soccer players (age = 24.8 ± 5.5 years; height = 1.80 ± 0.07 m; mass = 76.73 ± 8.31 kg) while kicking a stationary soccer ball into a goal 12 m away with their right foot with maximal effort. We found that impact velocities of the foot center of mass (CM), the impact velocity of the foot CM relative to the knee, peak velocity of the knee relative to the hip, and the peak angular thigh velocity were significantly correlated with ball velocity. These data suggest that linear and angular velocities at and prior to impact are critical to developing high ball velocity. Since events prior to impact are critical for kick success, coordination and summation of speeds throughout the kicking motion are important factors. Segmental coordination that occurs during a maximal effort kick is critical for completing a successful kick.  相似文献   

10.
Quantifying countermovement jump (CMJ) and landing knee flexion angle is important for performance and injury risk assessment. The purpose of the study was to compare electrogoniometer (El-Gon)- and video-derived CMJ and landing knee flexion angle. Twenty-two adults performed three CMJs while knee flexion angle was simultaneously assessed using an El-Gon and video. The average systematic offset (RMSE) of the El-Gon-derived knee flexion angle throughout the entire movement was 7.03°?±?2.69°. Excellent reliability was demonstrated by the El-Gon (ICCavg?=?0.92). Countermovement knee flexion angle, maximum landing knee flexion angle and flexion angle at maximum vertical ground reaction force were 12.0°, 10.9°, and 5.7° higher, respectively, when assessed using El-Gon (p?<?0.001), compared to video. Errors between instruments are likely due to El-Gon crosstalk, misalignment and/or axis determination. The El-Gon is a cost-effective and time-efficient alternative to video analysis for the assessment of knee flexion angle if the error is accounted for and the sensor is precisely attached.  相似文献   

11.
Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.  相似文献   

12.
The aim of this study was to determine if selected kinematic measures (foot strike index [SI], knee contact angle and overstride angle) were different between aquatic treadmill (ATM) and land treadmill (LTM) running, and to determine if these measures were altered during LTM running as a result of 6 weeks of ATM training. Acute effects were tested using 15 competitive distance runners who completed 1 session of running on each treadmill type at 5 different running speeds. Subsequently, three recreational runners completed 6 weeks of ATM training following a single-subject baseline, intervention and withdrawal experiment. Kinematic measures were quantified from digitisation of video. Regardless of speed, SI values during ATM running (61.3 ± 17%) were significantly greater (P = 0.002) than LTM running (42.7 ± 23%). Training on the ATM did not change (pre/post) the SI (26 ± 3.2/27 ± 3.1), knee contact angle (165 ± 0.3/164 ± 0.8) or overstride angle (89 ± 0.4/89 ± 0.1) during LTM running. Although SI values were different between acute ATM and LTM running, 6 weeks of ATM training did not appear to alter LTM running kinematics as evidenced by no change in kinematic values from baseline to post intervention assessments.  相似文献   

13.
ABSTRACT

The aims of this study were twofold: firstly, to compare lower limb kinematic and kinetic variables during a sprint and 90° cutting task between two averaging methods of obtaining discrete data (peak of average profile vs. average of individual trial peaks); secondly, to determine the effect of averaging methods on participant ranking of each variable within a group. Twenty-two participants, from multiple sports, performed a 90° cut, whereby lower limb kinematics and kinetics were assessed via 3D motion and ground reaction force (GRF) analysis. Six of the eight dependent variables (vertical and horizontal GRF; hip flexor, knee flexor, and knee abduction moments, and knee abduction angle) were significantly greater (p ≤ 0.001, g = 0.10–0.37, 2.74–10.40%) when expressed as an average of trial peaks compared to peak of average profiles. Trivial (≤ 0.04) and minimal differences (≤ 0.94%) were observed in peak hip and knee flexion angle between averaging methods. Very strong correlations (ρ ≥ 0.901, < 0.001) were observed for rankings of participants between averaging methods for all variables. Practitioners and researchers should obtain discrete data based on the average of trial peaks because it is not influenced by misalignments and variations in trial peak locations, in contrast to the peak from average profile.  相似文献   

14.
Many important notions in Life Sciences are linked with the idea of cycles, periodicity, fluctuations and transitions. The aim of this paper is to use spectral analysis in a unique way to study and quantify whole body coordination during gait. A participant walked at 3 km/h and ran at 15 km/h on a treadmill for 2 minutes. Position of the approximate center of rotation of the toe, ankle, knee, hip, shoulder, elbow and wrist, heel, PSIS and head were collected (CODAmotion; 100 Hz). Fast Fourier Transform was performed on x-coordinate data of the 1) knee marker; 2) 4 markers attached to the free lower limb (toe, ankle, heel and knee); 3) left and right free lower limbs; 4) whole body (all markers). Gait is described by a largely harmonic and resonant oscillator that operates unilateral free limbs at the stride frequency, and axial regions at the step frequency. Running is described by a more harmonic and resonant oscillating structure than walking, with a 3 times higher Q factor and 47% lower Inharmonicity Index. This method is presented as a way to capture global dynamics of our complex multi-segment system, and presents a novel application of spectral analysis to study coordination.  相似文献   

15.
The aim of this study was to investigate differences in joint power generation between well-trained adult athletes and young sprinters from block clearance to initial contact of second stance. Eleven under 16 (U16) and 18 under 18 (U18) promising sprinters executed an explosive start action. Fourteen well-trained adult sprinters completed the exact same protocol. All athletes were equipped with 74 spherical reflective markers, while an opto-electronic motion analysis system consisting of 12 infrared cameras (250 Hz, MX3, Vicon, Oxford Metrics, UK) and 2 Kistler force plates (1,000 Hz) was used to collect the three-dimensional marker trajectories and ground reaction forces (Nexus, Vicon). Three-dimensional kinematics, kinetics, and power were calculated (Opensim) and time normalised from the first action after gunshot until initial contact of second stance after block clearance. This study showed that adult athletes rely on higher knee power generation during the first stance to induce longer step length and therefore higher velocity. In younger athletes, power generation of hip was more dominant.  相似文献   

16.
Abstract

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.  相似文献   

17.
This paper introduces the first stage of a new model-based approach to three-dimensional (3D) human movement tracking. A ‘generate-and-test’ matching procedure was adopted by matching rendered images of a 3D computer graphics model of the human body to target images of rigid body motion. The set of pixels to be compared were just those corresponding to the model of the body in the rendered images. The matching criterion to optimize model position and orientation was based on the minimisation of the RGB (red-green-blue) colour difference between generated model images and associated target images. The method was able to track synthetic image sequences of a half twisting somersault accurately with root-mean-square (rms) errors of less than 5 mm and 0.3∘ for position and orientation estimates respectively. The suitability of the proposed approach for rigid body motion tracking was supported by additional tracking experiments on video image sequences of ‘wooden cross’ trajectories. Comparisons of tracked estimates against manual digitizing estimates returned relatively small rms difference values on both side somersault and twisting somersault movements. The proposed approach has the potential to track video images of a human torso using a rigid body model and hence to track articulated movements by successively adding segments to the model in a hierarchical manner.  相似文献   

18.
19.
This study aimed to determine the effect of different percentages of body weight support (BWS) on spatiotemporal step characteristics during running. 26 endurance runners (age: 37 ± 9 years) completed a running treadmill protocol consisting of 6 different conditions (BWS combinations: 0–50%), with velocity maintained at 12 km/h. Each condition lasted 1 minute. Step angle, ground contact time (CT), flight time (FT), step length (SL) and frequency (SF), and duration of phases during stance time (phase1: initial contact; phase2: midstance; phase3: propulsion) were measured for every step during the test using a photoelectric cell system. Compared with the baseline condition (100% BW), FT was longer, CT was shorter, SL was longer, SF was lower, and the step angle was higher with each increase in BWS (p < 0.05). Also, some changes were observed in the duration of phases during stance time: phase1 did not experience changes across experimental conditions (p = 0.096), phase2 decreased and phase3 increased as BW was supported (p < 0.05). These results indicate that as BW was supported, runners showed longer FT and SL, shorter CT, lower SF, and greater step angle as well as some changes in the phases during the ground contact. Therefore, this study highlights the effect of different percentages of BWS on spatiotemporal parameters.  相似文献   

20.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号