首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
对内蒙古竞走队的20名优秀运动员分别补充L-苹果酸饮料和安慰荆,观察其对有氧训练运动员做功能力的影响,为苹果酸运动饮料用于实践提供实验依据.结果表明:补充苹果酸饮料可使无氧运动做功能力明显提高,使乳酸消除加快;同时,苹果酸饮料可加速消除有氧运动后产生的乳酸,有利于延缓运动中的疲劳出现.  相似文献   

2.
支链氨基酸对赛艇运动员极限运动血葡萄糖异生的影响   总被引:9,自引:0,他引:9  
目的:探讨补充支链氨基酸(BCAA)对不同负荷运动后及恢复期糖代谢和糖异生的影响。方法;20名赛艇运动员随机分为2组(BCAA组和对照组),BCAA组每天补充支链氨基酸,时间为4周,对照组则补充安慰剂。在实验期间,两组运动员都进行相同负荷的运动训练。4周后,在赛艇测功仪上进行模拟2km和5km的耐力测试,并分别在运动前、运动后即刻和运动后30min取血测定血糖、丙氨酸和乳酸。结果:在耐力极限负荷运动中,BCAA组的血糖只在运动后即刻明显下降(P 〈0.05),而对照组则在运动后即刻和运动后30min都明显低于安静时水平(P〈0.05)。BCAA组血丙氨酸浓度在运动后即刻和运动后30min均明显增加(P,〈0.05),而对照组血丙氨酸浓度则在运动后出现明显的下降(P〈0.05)。BCAA组的血乳酸值在运动后明显低于对照组(P〈0.05)。结论:补充BCAA可促进力竭运动后及恢复期糖的异生、延缓疲劳发生和促进运动后疲劳的消除。  相似文献   

3.
糖-电解质饮料对赛艇运动员运动能力影响的研究   总被引:3,自引:0,他引:3  
观察了补充糖一电解质饮料赛艇的运动员在运动前、后的血糖、胰岛素、电解质等指标的变化。结果提示:在运动前15min补充含糖量为6%的糖-电解质饮料能使赛艇运动员延长运动时间和增加做功总量;糖一电解质饮料中含有多种可利用糖。虽然赛艇运动员在补充饮料15min后胰岛素浓度显增加,但血糖浓度仍维持较高水平;糖-电解质饮料含有适量的钾、钠、镁,这对运动中维持内环境稳定和水盐代谢稳定具有积极的生理意义。  相似文献   

4.
逐级递增负荷力竭性运动对短跑运动员自由基代谢的影响   总被引:2,自引:0,他引:2  
罗丽  张佑琏 《体育学刊》2004,11(6):46-48
研究了逐级递增负荷力竭性运动对短跑运动员自由基代谢的影响。结果表明:逐级递增负荷力竭性运动使机体脂质过氧化反应明显加强,自由基防御体系协同完整的抗氧化能力明显降低,但运动对不同的抗氧化剂影响是不同的;尿液MDA含量、尿液T-SOD活力是反映自由基代谢状态的灵敏指标。  相似文献   

5.
本文目的在于探讨补糖在运动中的作用.自行车运动员进行4h的公路训练,分别服用水、低。血糖指数食物和运动饮料,测定运动中2、3、4h和运动后2h的血糖及部分时间点的血乳酸和血尿素。结果发现补糖能有效减少长时间运动过程中血糖的下降幅度,且高血糖指数的运动饮料能增加和维持运动中的血糖水平。补糖有利于降低长时间运动过程中的血乳酸和血尿素值。  相似文献   

6.
运用文献综述及逻辑推理对极量强度运动后血乳酸产生机制提出质疑。指出:1)100m跑后血乳酸浓度升高并非运动中糖无氧代谢直接供能所产生;2)糖无氧代谢产生的ATP与快速合成CP有关。3)极量强度运动后血乳酸升高机制的新认识:极量强度运动时平时,产生乳酸的组织代谢加强;糖酵解释放ATP合成CP的过程加快;运动员训练或比赛时心理紧张;肌激酶反应加强;CP的再合成与糖酵解过程偶联加强。  相似文献   

7.
探讨甘氨酸补充对一次力竭性运动小鼠抗体形成细胞的影响。方法:将小鼠随机分成力竭性游泳运动组(E),甘氨酸补充后力竭性游泳组 (Gly+E),甘氨酸补充对照组(Gly),静息正常对照组(S),每组8 只。在Gly+E、Gly 组补充甘氨酸,其余两组给予生理盐水,处理4 周后,E 组和 Gly+E 组均做力竭性游泳运动。实验前5 天用SRBC免疫小鼠,采用定量溶血测定法(QHS)测定小鼠脾脏内抗体形成细胞溶解SRBC的能力;用 微量凝集法测定小鼠血清中抗SRBC抗体的效价;测定胸腺指数和脾脏指数。结果:与E 组比较,Gly+E 组的力竭性游泳运动时间显著延长 (P<0.01)。E 组和S 组血清抗体效价显著低于GLY 组和GLY+E 组(P<0.01)。在小鼠脾脏抗体形成细胞测定试验中观察到,E 组显著低于其他各 组,P<0.01;Gly+E 组显著高于E 组和S 组,但低于Gly 组(P<0.01)。E 组和S 组胸腺指数低于其他各组,但P>0.05;脾脏指数各组间比较有非常显 著性差异P<0.01。结论:甘氨酸预补充可提高力竭性游泳运动的最大操作能力;力竭性游泳运动降低血清中抗体效价,抗体形成细胞亦减少,甘氨酸 预补充可对抗这些变化。  相似文献   

8.
运动与氨代谢关系的研究进展   总被引:1,自引:0,他引:1  
运动中机体氨代谢增强。氨的主要来源:短时间高强度运动为骨骼肌的嘌呤核苷酸循环,长时间力竭性运动主要与骨骼肌大量摄取支链氨基酸有关。运动强度递增及长时间力竭运动,骨骼肌产氨增多。短时间力竭运动血氨与血乳酸的浓度呈正相关。运动性疲劳的产生亦与运动后高血氨水平密切相关。因此,血氨可以用作评定运动负荷的强度和量度、运动员机体的机能状态、疲劳程度及运动训练程度的有效指标。  相似文献   

9.
补充糖和/或肌酸对赛后血清肌酸激酶活性的影响   总被引:2,自引:0,他引:2  
夏强  曹建民 《山东体育科技》2002,24(3):38-39,42
8名男性足球运动员,按正交表L4(23)进行实验设计,进行关于糖、肌酸补充对足球运动员血清肌酸激酶活性影响的效果观察实验。A组仅补充空白饮料;B组每天补充20克肌酸;C组每天仅补充100克以低聚糖为主的饮料;D组同时补充肌酸和低聚糖饮料,补充方法同B、C组。连续补充5天。补充前后进行血清肌酸激酶浓度的测试。补充前测试时均喝空白饮料,补充后测试时补充相应饮料。测试前进行模拟现场比赛。模拟现场比赛分为两个半场,各45分钟,间隔15分钟。每个半场包15个3分钟的循环,测量每个半场后的血清肌酸激酶的浓度。结果表明:单独补充糖或肌酸,同时补充糖和肌酸均可使运动员赛后的即刻血清肌酸激酶活性显著下降,而且糖和肌酸同时补充效果好。提示同时补充糖、肌酸有利于足球运动员提高赛场竞技能力。  相似文献   

10.
球星猜猜看     
尚学东  刘康 《乒乓世界》2010,(3):151-151
运动中糖原补充的简单描述: (1)少量多次原则:顾名思义,即补充的次数多但单次量少,一般和水分一起补充。 (2)低聚糖补充:首先低聚糖的缓释效用比较适合,另外低聚糖配置的运动饮料对肠胃刺激小,溶解度高,适合配置高浓度运动饮料。  相似文献   

11.
Nine male triathletes were studied during 160 min of exercise at 65% VO2 max on two occasions to examine the effect of glucose polymer ingestion on energy and fluid balance. During one trial they received 200 ml of a 10% glucose polymer solution at 20 min intervals during exercise (CHO), while in the other they received an equal volume of a sweet placebo (CON). On average, blood glucose levels (CON = 4.2 +/- 0.2 mmol l-1, CHO = 4.8 +/- 0.1, mean +/- S.E.) and respiratory exchange ratios (CON = 0.84 +/- 0.01, CHO = 0.87 +/- 0.01) during exercise were higher (P less than 0.05) as a result of the glucose polymer ingestion. There were no differences between trials, however, in the estimated plasma volume changes during exercise. Exercise time to exhaustion at an intensity corresponding to 110% VO2 max, performed 5 min after the submaximal exercise, was not influenced by glucose polymer ingestion. Relative to a control exercise bout conducted without prior exercise, however, sprint performance and postexercise blood lactate accumulation were impaired in both trials. It is concluded that glucose polymer ingestion maintains blood glucose levels and a high rate of carbohydrate oxidation during prolonged exercise, without compromising fluid balance.  相似文献   

12.
This study was designed to investigate the effect of ingesting a glucose plus fructose solution on the metabolic responses to soccer-specific exercise in the heat and the impact on subsequent exercise capacity. Eleven male soccer players performed a 90 min soccer-specific protocol on three occasions. Either 3 ml · kg(-1) body mass of a solution containing glucose (1 g · min(-1) glucose) (GLU), or glucose (0.66 g · min(-1)) plus fructose (0.33 g · min(-1)) (MIX) or placebo (PLA) was consumed every 15 minutes. Respiratory measures were undertaken at 15-min intervals, blood samples were drawn at rest, half-time and on completion of the protocol, and muscle glycogen concentration was assessed pre- and post-exercise. Following the soccer-specific protocol the Cunningham and Faulkner test was performed. No significant differences in post-exercise muscle glycogen concentration (PLA, 62.99 ± 8.39 mmol · kg wet weight(-1); GLU 68.62 ± 2.70; mmol · kg wet weight(-1) and MIX 76.63 ± 6.92 mmol · kg wet weight(-1)) or exercise capacity (PLA, 73.62 ± 8.61 s; GLU, 77.11 ± 7.17 s; MIX, 83.04 ± 9.65 s) were observed between treatments (P > 0.05). However, total carbohydrate oxidation was significantly increased during MIX compared with PLA (P < 0.05). These results suggest that when ingested in moderate amounts, the type of carbohydrate does not influence metabolism during soccer-specific intermittent exercise or affect performance capacity after exercise in the heat.  相似文献   

13.
运动训练对原发性高血压病患者血压的影响   总被引:2,自引:0,他引:2  
以递增负荷试验中出现乳酸阈值时对应的强度为运动强度,对11例原发性高血压病患者进行10周的功率自行车运动,探讨乳酸阈值强度的运动对原发性高血压病患者血压的影响,同时观察患者运动前后的体能、血脂、血糖及胰岛素的变化。结果显示:运动10周后患者的血压显著降低,体能及糖、脂代谢明显改善。提示:乳酸阈值强度的运动对于防治轻度高血压病及其并发症有一定意义。  相似文献   

14.
The badminton serve requires great skill and may be affected by fatigue. The aim of the present study was to determine whether carbohydrate ingestion affects badminton performance. Nine male badminton players (age 25 ± 7 years, mass 80.6 ± 8.0 kg) attended the laboratory on three occasions. The first visit involved an incremental exercise test to exhaustion to determine peak heart rate. Participants were given 1 L of a carbohydrate-electrolyte drink or a matched placebo during the experimental trials. The accuracy of 10 long and 10 short serves was determined before and after exercise. The fatiguing exercise was 33 min in duration (83 ± 10% and 84 ± 8% peak heart rate for the placebo and carbohydrate trial respectively). Capillary blood samples (20 μL) were taken before and after exercise for determination of blood glucose and lactate. There was deterioration in long serve accuracy with fatigue (P = 0.002), which carbohydrate ingestion had a tendency to prevent (P = 0.077). There was no effect of fatigue (P = 0.402) or carbohydrate ingestion (P = 0.109) on short serve accuracy. There was no difference in blood glucose concentration between trials (P = 0.851). Blood lactate concentration was higher during the placebo trial (P = 0.016). These results suggest that only the long serve is influenced by fatigue and carbohydrate had a tendency to prevent the deterioration in performance.  相似文献   

15.
BackgroundCitrulline is one of the non-essential amino acids that is thought to improve exercise performance and reduce post-exercise muscle soreness. We conducted a systematic review and meta-analysis to determine the effect of citrulline supplements on the post-exercise rating of perceived exertion (RPE), muscle soreness, and blood lactate levels.MethodsA random effects model was used to calculate the effect sizes due to the high variability in the study design and study populations of the articles included. A systematic search of PubMed, Web of Science, and ClinicalTrials.gov was performed. Eligibility for study inclusion was limited to studies that were randomized controlled trials involving healthy individuals and that investigated the acute effect of citrulline supplements on RPE, muscle soreness, and blood lactate levels. The supplementation time frame was limited to 2 h before exercise. The types and number of participants, types of exercise tests performed, supplementation protocols for L-citrulline or citrulline malate, and primary (RPE and muscle soreness) and secondary (blood lactate level) study outcomes were extracted from the identified studies.ResultsThe analysis included 13 eligible articles including a total of 206 participants. The most frequent dosage used in the studies was 8 g of citrulline malate. Citrulline supplementation significantly reduced RPE (n = 7, p = 0.03) and muscle soreness 24-h and 48-h after post-exercise (n = 7, p = 0.04; n = 6, p = 0.25, respectively). However, citrulline supplementation did not significantly reduce muscle soreness 72-h post-exercise (n = 4, p = 0.62) or lower blood lactate levels (n = 8, p = 0.17).ConclusionCitrulline supplements significantly reduced post-exercise RPE and muscle soreness without affecting blood lactate levels.  相似文献   

16.
Abstract

This study sought to compare the time course changes in oxidative state and glycemic behavior when glucose or glucose plus fructose are consumed before endurance and strength exercise. After two weeks on a controlled diet, 20 physically trained males ingested an oral dose of glucose or glucose plus fructose, 15 min before starting a moderate-intensity 30-min session of endurance or strength exercise. The combination resulted in four randomized interventions: glucose or glucose plus fructose + endurance exercise and glucose or glucose plus fructose + strength exercise, which were implemented consecutively in random order at 1-week intervals. Plasma concentration of lipoperoxides, oxidized LDL, reduced glutathione, catalase and glycemia were determined at baseline, during exercise and acute recovery. Following the ingestion of glucose plus fructose, lipoperoxides, catalase and reduced glutathione depletion were significantly higher than following consumption of glucose, for both endurance and strength exercise (P < 0.05). Oxidized LDL-c was higher after glucose plus fructose than after glucose alone in endurance exercise (P < 0.05). There was no difference in the glycemic peak between glucose plus fructose and glucose ingestion in endurance exercise trials. In strength exercise, the post-absorptive glycemic peak was less when the participants ingested glucose plus fructose than glucose (P < 0.05), and a second peak was found in the recovery phase of this group (P < 0.05). In conclusion, the addition of fructose to a pre-exercise glucose supplement triggers oxidative stress.  相似文献   

17.
吕东旭  张明伟 《体育科学》2004,24(8):38-39,43
通过对吉林省优秀短道速滑运动员在年训练周期中血乳酸的监控,探讨其训练强度的合理性。采用检测运动员运动后即刻的血乳酸并以此反映运动强度的现场测试方法。结果显示,运动员在冰期速度耐力训练后即刻的血乳酸浓度偏高,非冰期速度耐力训练后的血乳酸浓度偏低;冰期一般耐力(有氧耐力)训练后的血乳酸偏高,非冰期有氧耐力训练后的血乳酸偏低。结论:在提高速度耐力的训练手段中,运动强度安排不合理,导致了运动员的速度耐力不足,调整训练强度是今后训练方法中的重点。  相似文献   

18.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1 +/- 6.7 years, VO 2max 52.0 +/- 7.9 ml kg -1 min -1 ) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a ‘U-shaped’ blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0 +/- 1.4 km h -1 ) was significantly slower than running speed at the lactate threshold (12.4 +/- 1.7 km h -1 ) (P < 0.05), but there were no significant differences in VO 2 , heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-topyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

19.
Abstract

Males (N = 7), ages 23–45, were tested on a maximum and two submaximum performance tests to determine the effects of different intensities of exercise on intraocular pressure. Intraocular pressure, blood pH, and blood lactate concentration were measured at rest, the midpoint of the submaximum tests, the end of exercise, and during the first 10 min of recovery. A two-way ANOVA was employed to determine if any significant differences existed between means due to the exercise or the intensity. The results of this study indicate that the intraocular pressure decreases during exercise and the first few minutes of recovery. However, the intensity of the exercise was not related to the amount of decrease in intraocular pressure. The decrease in pressure was associated with a decrease in blood pH and an increase in blood lactate concentration.  相似文献   

20.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1+/-6.7 years, VO2max 52.0+/-7.9 ml x kg(-1) x min(-1)) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a 'U-shaped' blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0+/-1.4 km x h(-1)) was significantly slower than running speed at the lactate threshold (12.4+/-1.7 km x h(-1)) (P < 0.05), but there were no significant differences in VO2, heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-to-pyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号