首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current information and evidence indicate that for most activities free weight training can produce superior results compared to training with machines, particularly when the free weight training involves complex, multi-joint exercises. A number of reasons can account for the superiority of free weights; the major factor deals with mechanical specificity. Mechanical specificity is concerned with appropriate movement patterns, force application and velocity of movement. Considering the available evidence that adherence to the concept of specificity of exercise and training can result in a greater transfer of training effect then free weights should produce a more effective training transfer. Therefore, the majority of resistance exercises making up a training programme should include of free weight exercises with emphasis on mechanical specificity (i.e. large muscle mass exercises, appropriate velocity, contraction type etc.). Generally, machines should be used as an adjunct to free weight training and, depending upon the sport, can be used to a greater or lesser extent during various phases of the training period (preparation, pre-competition, competition).  相似文献   

2.
Much of the training of competitive telemark skiers is performed as dry-land exercises. The specificity of these exercises is important for optimizing the training effect. Our aim here was to study the activation of the knee extensor musculature and knee angular displacement during competitive telemark skiing and during dry-land strength training exercises to determine the specificity of the latter. Specificity was analysed with respect to angular amplitude, angular velocity, muscle action and electromyographic (EMG) activity. Five male telemark skiers of national and international standard volunteered to participate in the study, which consisted of two parts: (1) skiing a telemark ski course and (2) specific dry-land strength training exercises for telemark skiing (telemark jumps and barbell squats). The angular displacement of the right knee joint was recorded with an electrogoniometer. A tape pressure sensor was used to measure pressure between the sole of the foot and the bottom of the right ski boot. Electromyographic activity in the right vastus lateralis was recorded with surface electrodes. The EMG activity recorded during maximum countermovement jumps was used to normalize the EMG activity during telemark skiing, telemark jumps and barbell squats. The results showed that knee angular displacement during telemark skiing and dry-land telemark jumps had four distinct phases: a flexion (F1) and extension (E1) phase during the thrust phase of the outside ski/leg in the turn/jump and a flexion (F2) and extension (E2) phase when the leg was on the inside of the turn/jump. The vastus lateralis muscle was activated during F1 and E1 in the thrust phase during telemark skiing and telemark jumps. The overall net knee angular amplitude was significantly greater (P<0.05) for telemark jumps than for telemark skiing. Barbell squats showed a knee angular amplitude significantly greater than that in telemark skiing (P<0.05). The mean knee angular velocity of the F1 and E1 phases during telemark skiing was about 0.47 rad?·?s?1; during barbell squats, it was about 1.22 rad?·?s?1. The angular velocity during telemark jumps was 2.34 and 1.59 rad?·?s?1 in the F1 and E1 phase, respectively. The normalized activation level of the EMG bursts during telemark skiing, telemark jumps and barbell squats was 70–80%. In conclusion, the muscle action and level of activation in the vastus lateralis during the F1 and E1 phases were similar during telemark skiing and dry-land exercises. However, the dry-land exercises showed a larger knee extension and flexion amplitude and angular velocity compared with telemark skiing. It appears that an adjustment of knee angular velocity during barbell squats and an adjustment of knee angle amplitude during both telemark jumps and barbell squats will improve specificity during training.  相似文献   

3.
One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8?±?3.8 years; body mass (BM): 70.2?±?12.2?kg; height: 1.74?±?0.78?m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P?>?.05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P?<?.05) decrease in jump height (CMJ: ?12% to ?17%, DJ: ?10% to ?14%); relative peak power (CMJ: ?8% to ?17%, DJ: ?7% to ?10%); and peak velocity (CMJ: ?4% to ?7%, DJ: ?3% to ?8%); while PJ reactive strength index was significantly reduced (?15% to ?21%) with all WR conditions. Consideration should be given to the inclusion of WR in sports where VJ’s are important components as it may provide a novel movement specific training stimulus.

Highlights

  • WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force.

  • Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3–6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance.

  • Practitioners can safely load their athletes with upper or lower body WR of 3–6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too.

  • As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  相似文献   

4.
Abstract

In recent years, a method of plyometrics (exercises that cause a rapid lengthening of a muscle prior to contraction) called depth jumping has become a part of the training routine of many athletes. Two experiments are described in which the effectiveness of the exercises is examined. In Experiment 1, undergraduate students in beginning weight training classes trained with three different jumping programs: (1) maximum vertical jumps, (2) 0.3 m depth jumps, and (3) 0.75 m and 1.10 m depth jumps. In addition, all groups also lifted weights. In Experiment 2, a weight training class and the volleyball team at Brigham Young University-Hawaii were divided into two groups. One group lifted weights and performed 0.75 and 1.10 m depth jumps. The other group only lifted weights. In Experiment 1, the three training programs resulted in increases in one repetition maximum (1 RM) squat strength, isometric knee extension strength, and in vertical jump; however, there were no significant differences between treatments. In Experiment 2, all groups made significant increases in vertical jump, except the group of weight lifters, who did no jumping. It was concluded that depth jumps are effective but not more effective than a regular jumping routine.  相似文献   

5.
Slackline training has been shown to improve balance and neuromuscular performance. However, recent studies suggested that balance is task-specific, implying that transferability of balance skills is limited and might depend on the similarity of the tasks. This study therefore investigated if short-term slackline training could improve performance in balance tasks that are either more or less similar to the trained slackline task. Furthermore, we assessed potential transfer effects to other neuromuscular performance tests.

25 female handball players (23.7?±?3.9 years) participated in our study and were matched to either a slackline training (SLT; n?=?14) or a control group (CON; n?=?11). The intervention comprised 12 sessions with overall 120 minutes of slackline training using single and double slacklines. Slackline standing time and measures of dynamic and static balance were assessed before and after the intervention, as well as power and sprint-related performance parameters.

Two-way repeated-measures ANOVA found a significant group?×?time interaction for slackline standing time, indicating larger training effects for SLT. For the remaining dynamic and static balance tests, no significant interactions were found. With regard to neuromuscular performance, there was a significant group?×?time interaction only in change of direction.

In essence, the study showed that slackline training induced task-specific balance improvements without affecting general balance. This adds further evidence to the task-specificity principle of balance, although the specificity of the sample as well as the briefness of the intervention should be taken into account when generalizing our findings. Nonetheless, this study contains practical implications for team sports interventions and future balance training studies, highlighting the importance of selecting appropriate balance exercises to yield rapid and the desired training outcomes.  相似文献   

6.
Abstract

The purpose of this study was to examine the effects of calendar and skeletal age, anthropometric dimensions, training history and their interactions on vertical jumping height and horizontal overhead throwing velocity in a cross‐section of 318 young male athletes (age range 9–16 years) participating in cross‐country skiing (n = 70), basketball (n = 40), apparatus gymnastics (n = 19), ice hockey (n = 50), track and field (n = 89) and wrestling (n = 50). Vertical jumping height was measured with four different loads held on the shoulders and then interpolated for loads representing 0 and 40% body mass. Horizontal overhead throwing velocity using both hands was determined for seven balls of different weights and then interpolated for weights representing 1 and 5% body mass.

Both vertical jumping height and overhead throwing velocity were found to increase (P< 0.01) from the skeletally youngest to the oldest cohort when the effects of body height and mass were controlled. The inter‐event comparisons did not reveal statistically significant differences in respect of vertical jumping height. Also in the overhead throwing tests, the inter‐event differences were small, although the analysis of variance revealed statistically significant (P< 0.001) differences for the skeletal age cohorts of 13 and 14 years. While the quantity of training had no effect on vertical jumping height, it explained the results in the overhead throwing test.

The effects of training on vertical jumping and horizontal overhead throwing among adolescent athletes were considered to be small, while maturational processes and anthropometric development followed by increase in calendar age were deemed to be of greater importance.  相似文献   

7.
Abstract

Drag is one of the major factors that influences kayaking performance. To focus on the drag of the kayak’s hull shape and the paddlers’ weight per se, the passive drag (Dp) was measured on a flat-water sprint course for one paddler with added weights. Dp was measured by an electromechanical towing device using a load cell, at incremental and constant velocities from 2.78 to 5.56 m/s. Three kayaks of different sizes and shapes (Nelo® K1 Quattro-M, ML, and L) were used and the paddlers’ body weight was adjusted with weights so the total paddler weight in the kayak was 65, 75, and 85 kg. The mean Dp increased by the power function of D = kvn (mean R2 = .990; SD .006). The Dp went from 21.37?±?1.29 N at 2.78 m/s to 89.32?±?6.43 N at 5.56 m/s. For the two lighter weighted kayaks (65 and 75 kg), the lowest Dp was observed with different kayak sizes (M, ML, or L) depending on the target velocity. The manufacturers suggest that paddlers should select a kayak size according to their body weight to minimise drag; however, the results of this study suggest that target velocities, and thus competition distance should also be factored into kayak selection.  相似文献   

8.
Abstract

The main purpose of this article was to review a series of studies (n=23) on physical characteristics, physiological attributes, throwing velocity and accuracy, and on-court performances of male handball players – amateur players, experienced players, professional players, and players on the national team. Five main findings emerged from our review: (1) Elite players are heavier and have higher fat-free mass than amateur players. (2) The maximal oxygen uptake of male players is between 50 and 60 ml · kg?1 · min?1. (3) Throwing velocity is higher by as much as 9% in elite male players compared with amateur male players. (4) Heart rates can rise above 160 beats · min?1 in male players during a game. (5) On-court distance covered in a game averaged approximately 4 km and ranged between 2 and 5 km, depending on playing position. Our methodological concerns based on the reviewed studies are: (a) a lack of on-court physiological data; (b) a lack of experimental/manipulative studies; (c) limited data on throwing accuracy; and (d) a lack of longitudinal studies. The practical implications include: (a) strength and power exercises should be emphasized in conditioning programmes, as they are associated with both sprint performance and throwing velocity; (b) speed and agility drills should also be implemented in conditioning programmes; and (c) specificity of training based upon the position of the player is of great importance when planning strength and conditioning programmes.  相似文献   

9.
刘艳 《冰雪运动》2012,(1):22-24,28
力量素质是花样滑冰运动员在比赛中高质量的完成一套节目的保证。通过文献资料法、综合分析法,对花样滑冰运动员的专项力量训练方法进行研究。在花样滑冰力量训练中应遵循科学性、循序渐进、区别对待的训练原则,注意素质的全面发展,利用不同屈伸角度跳跃的组合练习、跳箱练习、变换方向跳障碍练习、跳绳练习、负重练习、滑行训练等方法进行力量素质的训练,双人滑选手尤其要特别注意进行托举力量及核心力量的练习。  相似文献   

10.
The effects of strength training of the quadriceps on peak power output during isokinetic cycling has been investigated in a group of 17 young healthy volunteers. Subjects trained by lifting near‐maximal loads on a leg extension machine for 12 weeks. Measurements of maximal voluntary isometric force were made at 2–3 week intervals and a continual record was kept of the weights lifted in training. Peak power output was measured at 110 rev min–1 and at either 70 or 80 rev min–1 before and after the 12 week training period. Measurements of maximum oxygen uptake (VO2max) were made on 12 subjects before and after training. The greatest change was in the weights lifted in training which increased by 160–200%. This was accompanied by a much smaller increase in maximum isometric force (3–20%). There was no significant change in peak power output at either speed. The VO2max remained unchanged with training. The role of task specificity in training is discussed in relation to training regimes for power athletes and for rehabilitation of patients with muscle weakness.  相似文献   

11.
Abstract

To enhance muscular strength, resistance training machines with a cam, incorporating a variable resistance moment arm, are widely used. However, little information is available about the influence of the variable resistance moment arm on torque, velocity, and power during muscle contraction. To address this, a knee extensor machine was equipped with a cam or with a semi-circular pulley that imposed a variable or a constant resistance moment arm, respectively. Fourteen physically active men performed two full knee extensions against loads of 40–80 kg in both conditions. Participants developed significantly higher torque with the pulley than with the cam (P < 0.001). The relative differences between pulley and cam conditions across all loads ranged from 8.72% to 19.87% (P < 0.001). Average knee extension velocity was significantly higher in the cam condition than in the pulley condition. No differences were observed in average and peak power, except at 50 and 55 kg. Torque–velocity and power–velocity relationships were modified when the resistance moment arm was changed. In conclusion, whatever the link, namely cam or pulley, the participants produced similar power at each load. However, the torque–velocity and power–velocity relationships were different in the cam and pulley conditions. The results further suggest that the influence of the machine's mechanism on muscular performance has to be known when prescribing resistance exercises.  相似文献   

12.
Previous studies indicate that elastic resistance bands (ERB) can be a viable option to conventional resistance-training equipment (CRE) during single-joint resistance exercises, but their efficacy has not been established for several commonly used multiple-joint resistance exercises. Thus, we compared muscular activation levels in four popular multiple-joint exercises performed with ERB (TheraBand®) vs. CRE (Olympic barbell or cable pulley machines). In a cross-over design, men and women (n?=?29) performed squats, stiff-legged deadlifts, unilateral rows and lateral pulldown using both modalities. Multilevel mixed-effects linear regression analyses of main and interaction effects, and subsequent post hoc analyses were used to assess differences between the two resistance-training modalities. CRE induced higher levels of muscle activation in the prime movers during all exercises (p?<?.001 for all comparisons), compared to muscle activation levels induced by ERB. The magnitude of the differences was marginal in lateral pulldown and unilateral rows and for the erector spinae during stiff-legged deadlifts. In squats the quadriceps femoris activations were substantially lower for ERB. The differences between ERB and CRE were mostly observed during the parts of the contractions where the bands were relatively slack, whilst the differences were largely eliminated when the bands became elongated in the end ranges of the movements. We conclude that ERB can be a feasible training modality for lateral pulldowns, unilateral rows and to some extent stiff-legged deadlifts, but not for the squat exercise.  相似文献   

13.
This study aimed to compare the effect of 6 weeks of resistance training or combined resistance training and change of direction exercises on physical performance and motor skills in futsal players. Thirty-four futsal players were divided into full squat group (SG, n = 12), combined full squat and change of direction exercises group (S+CDG, n = 12) and control group (CG, n = 10). The resistance training for SG consisted of full squat with low load (~45–58% 1RM) and low volume (4–6 repetitions), whereas the S+CDG performed the same resistance training program combined with loaded change of direction. Sprint time in 10 and 20 m, change of direction test, countermovement vertical jump (CMJ) height, maximal strength and force–velocity relationship in full squat exercise, kicking speed ball (BSmean) and repeated sprint ability (RSAmean) were selected as testing variables. Both experimental groups showed significant improvements for CMJ, BSmean and all strength parameters. Only SG resulted in significant sprint gains, whereas S+CDG also achieved significant improvements in RSAmean. The CG remained unchanged after training period. No significant differences were found between both experimental groups. These findings suggest that only 12 sessions of either lightweight resistance training alone, lifting the load at maximal intended velocity or combined with change of direction exercises is enough to improve several physical and skills capacities critical to futsal performance in adult players.  相似文献   

14.
ABSTRACT

An essential component of any physical preparation programme is the selection of training exercises to facilitate desired performance outcomes, with practitioners balancing the principles of sports training to inform exercise selection. This study aimed to advance biomechanical understanding of the principles of overload and specificity within exercise selection, utilising novel joint kinetic and intra-limb joint coordination analyses. Three-dimensional kinematic and kinetic data were obtained from six male sprinters (100 m PB, 10.64–11.00) performing block starts (competitive motor task) and seven training exercises that encompassed traditionally viewed general and more specific exercises. Results highlighted the challenging nature of exercise selection, with all exercises demonstrating capacity to overload relevant joint kinetic features of the block start. In addition, all exercises were able to promote the emergence of proximal and in-phase extension joint coordination patterns linked with block start execution, although traditionally viewed non-specific exercises elicited greater overall coordination similarity. The current research helps advance biomechanical understanding of overload and specificity within exercise selection, by demonstrating how exercise selection should not solely be based on perceived replication of a competitive motor task. Instead, practitioners must consider how the musculoskeletal determinants of performance are overloaded, in addition to promoting task specific coordination patterns.  相似文献   

15.
In the context of strength training in rehabilitation, visual movement control can be helpful to ensure correct movements. However, there are only a few studies that deal with the effectiveness of feedback during resistance exercises. To investigate the effect of feedback during guided exercise, 18 young adults (28.8?±?5.5 years) and 12 senior citizens (67.9?±?4.1 years) were tested. Subjects performed shoulder press exercises (3 sets, 15 repetitions) with and without visual movement control in a randomized order. On day 1, the subjects trained without load, and on day 2 they trained at 50% of their single repetition maximum. Joint articulation at the elbow was recorded using elbow extension and flexion. Autocorrelation was used to determine the reproducibility of movements. Subjects achieved better reproducibility of the movement with feedback than without (χ2?=?19.73; p?<?0.001). There was no effect of the load on motion accuracy (p?>?0.05), but the age group showed a significant effect (χ2?=?6.00; p?=?0.014). The younger group shows a higher degree of movement accuracy. In summary, visual movement control is useful in guided exercises to control movement execution. In clinical setting, this may be a way to control the motion performance of guided strength exercises and to ensure purposeful muscle work. Further studies should clarify the effect of visual feedback on the movement quality in unguided strength exercises.  相似文献   

16.
In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty‐eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel‐to‐heel length in the two‐leg split across, and flex‐and‐reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre‐post training effects and an interaction between pre‐post training and ‘treatment’ effects (P< 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.  相似文献   

17.
Using theoretical principles, the components of drag (friction D F, pressure D PR and wave D W) of a single-seat kayak were analysed. The purpose was to examine the effect of changes in wetted surface area due to changes in kayaker’s weight and the relative contribution of D F, D PR and D W to the total passive drag as function of velocity. The total passive drag values were based on experimental data collected in a single-seat kayak. Three different kayaker simulated weights were tested – 65, 75 and 85 kg. D F was the drag component that contributed the greatest percentage (between 60 and 68% at 5.56 m/s the top velocity tested) to the total passive drag for all the velocities tested and simulated weights. D W was the most affected by the increase in kayaker’s simulated weight, mainly when comparing 65/75 to 85 kg. Results support the importance of a kayak design selection that minimises the kayak’s drag for the individual weight of the kayaker. Also, the results suggest that the path for better hydrodynamic kayak performance should seek changes that can reduce D F, D PR and D W with D F offering the most potential to reduce passive drag.  相似文献   

18.
Abstract

The generality of the variability in practice prediction, arising from Schmidt's schema theory (1975) of motor learning was tested on young children. More specifically, the structure of the variability session and its subsequent influence on transfer performance to a novel variation of the task was examined. Children tossed a weighted bean bag to a fixed target location. Three groups experienced variability in practice with four bean bags of varying weights (3, 4, 5, and 6 oz.); however, the trial-by-trial presentation of each weight was different for each group. One group received a random presentation of each weight from trial to trial while another experienced random presentations of a weight for blocks of three trials. The third variability group received blocked practice with six trials per block for each weight. All variability groups experienced the same amount of practice at each weight. A constant practice group experienced only a single weight. Following 24 practice trials, all subjects transferred outside the range of previous experience, receiving three trials with one of two possible test weights (2 oz. or 7 oz.). The results indicated that the variability group practicing with blocks of three trials at each variation led to superior performance at transfer to novel variations of the task. Overall, the experiment suggested that transfer performance for children is affected by the appropriate structure of variable practice which formulates the schemata for movement production.  相似文献   

19.
Purpose

This study investigated whether within-task expertise affects the reported asymmetry in execution time exhibited in reactive and self-initiated movements.

Method

Karate practitioners and no-karate practitioners were compared performing a reverse punch in reaction to an external stimulus or following the intention to produce a response (self-initiated). The task was completed following the presentation of a specific (i.e., life-size image of opponent) or general stimulus and in the presence of click trains or white noise.

Results

Kinematic analyses indicated reactive movement had shorter time to peak velocity and movement time, as well as greater accuracy than self-initiated movement. These differences were independent of participant skill level although peak velocity was higher in the karate practice group than in the no-karate practice group. Reaction time (RT) of skilled participants was facilitated by a specific stimulus. There was no effect on RT or kinematic variables of the different type of auditory cues.

Conclusions

The results of this study indicate that asymmetry in execution time of reactive and self-initiated movement holds irrespective of within-task expertise and stimulus specificity. This could have implications for training of sports and/or relearning of tasks that require rapid and accurate movements to intercept/contact a target.  相似文献   

20.
We tested a simple and compact device designed for manual resistance training in conditions of microgravity (Self-Powered Rope Trainer Duo (SPoRT Duo)) to increase muscle performance. Twenty-four participants (20.8 ± 2.1 years) were randomly assigned to a manual resistance group (n = 12) and a free-weight group (n = 12). Participants performed eight exercises (three sets; 8–12 efforts) either with free weights or the SPoRT Duo twice a week for 6 weeks. Maximal isometric force of trunk flexion, back extension and chest press increased (P at least 0.01, d at least 0.52) both in the manual resistance group (18.4% ± 15.0%; 32.7% ± 22.7%; 15.3% ± 9.7%) and free-weight group (18.0% ± 13.9%; 26.6% ± 28.9%; 13.3% ± 7.6%). The change in maximal isometric force of wide grip row in both groups (d at best 0.38) did not reach statistical significance (P at best 0.08). The squat one-repetition-maximum increased in the manual resistance group (29.8% ± 22.1%) and the free-weight group (32.4% ± 26.6%). Jump height, determined by a jump-and-reach test, increased in the free-weight group (9.8% ± 13.2%) but not in the manual resistance group (2.0% ± 8.5%). Manual resistance training was equally effective in increasing strength as traditional resistance training with free weights. This apparatus is a useful addition to current in-flight exercise systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号