首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract

Head impacts resulting in a concussion negatively affect the vestibular system, but little is known about the effect of subconcussive impacts on this system. This study’s objective was to determine if subconcussive head impacts sustained over one competitive lacrosse season, effect sway velocity. Healthy Division I male lacrosse players (n = 33; aged 19.52 ± 1.20 years) wore instrumented helmets to track head impact exposures. At the beginning and end of the season the players completed an instrumented Balance Error Scoring System assessment to assess sway velocity. Score differentials were correlated to the head impact exposure data collected via instrumented helmets when averaged within participant. Paired samples t-tests revealed a post-season increase in sway velocity on the double leg stance, firm surface (p = 0.002, d = 0.59); tandem stance, firm surface (p = 0.033, d = 0.39) and double leg, foam surface (p = 0.014, d = 0.45) A significant correlation was found between change in tandem stance, firm surface sway velocities and linear acceleration (p < 0.001, r = 0.65). It appears subconcussive impacts may result in tandem stance balance deficits. Repetitive head impacts may negatively affect sway velocity, even in the absence of a diagnosed concussion injury.  相似文献   

2.
The reported incidence of head and neck injuries in hurling is 0.12 per 1000 hours, but no previous research has quantified head impact characteristics in this sport. Here, a wireless accelerometer and gyroscope captured head impacts, in 20 senior club level hurling players. Peak linear and rotational acceleration and impact location were recorded during three hurling training sessions, each player participating once. A mean of 27.9 impacts (linear acceleration >10g) per player, per session were recorded; 1314 impacts during a total exposure time of 247 minutes. Only 2.6% impacts had peak linear acceleration of >70g and 6.2% had peak rotational acceleration >7900 rad/s2. There were significant differences in the number and magnitude of impacts, quantified by the accelerometer, between three training sessions of differing intensity (?2 0.03–0.09, p < 0.001). This study represents a first step in quantifying head impacts during hurling, demonstrating the feasibility of this technology in the field. The sensors were able to discriminate between sessions of varying intensity. These data can be used to develop athlete monitoring protocols and may be useful in developing innovative helmet-testing standards for hurling. The potential for this technology to provide feedback has clinical utility for team medical personnel.  相似文献   

3.
Isokinetic dynamometry is used in the assessment and rehabilitation of shoulder function in tennis players. The aim of this study was to validate a newly installed Biodex III Isokinetic Dynamometer for internal and external shoulder rotation. A non-injured male performed this movement which replicates an integral section of the tennis service action (Cohen et al., 1994). Three maximal trials were performed at six randomly assigned angular velocities (0.52, 1.05, 1.57, 2.09, 2.62 and 3.14 rad x s(-1)) with 90 s rest between each set. Trials were recorded using an on-line motion analysis system and kinematic data were obtained. Kinematic angular displacement of the lever arm was slightly greater (> or = 0.01 rad x s(-1)) than for the isokinetic dynamometer at all test angular velocities. Mean angular velocities from the kinematic data were almost identical to those from the isokinetic dynamometer but less than the target values, and this difference (e.g. 2.55 rad x s(-1) at 3.14 rad x s(-1)) was greater at higher angular velocities owing to the greater acceleration phases required. Peak angular velocity was similar on the isokinetic dynamometer to the target values, but substantially less than those from the kinematic data (e.g. 0.68 rad x s(-1) at 0.52 rad x s(-1)). This suggests that the isokinetic data are over-smoothed and may mask important information. In summary, criterion validity of this isokinetic dynamometer is supported for displacement and mean angular velocity, but not for peak angular velocity. Shoulder rotations in tennis are often at angular velocities greater than the Biodex can reproduce, but for the purpose of monitoring the shoulder strength and range of motion of tennis players and providing safe functional rehabilitation, the use of slower angular velocities is acceptable.  相似文献   

4.
The purpose of this study was to determine whether joint velocities and segmental angular velocities are significantly correlated with ball velocity during an instep soccer kick. We developed a deterministic model that related ball velocity to kicking leg and pelvis motion from the initiation of downswing until impact. Three-dimensional videography was used to collect data from 16 experienced male soccer players (age = 24.8 ± 5.5 years; height = 1.80 ± 0.07 m; mass = 76.73 ± 8.31 kg) while kicking a stationary soccer ball into a goal 12 m away with their right foot with maximal effort. We found that impact velocities of the foot center of mass (CM), the impact velocity of the foot CM relative to the knee, peak velocity of the knee relative to the hip, and the peak angular thigh velocity were significantly correlated with ball velocity. These data suggest that linear and angular velocities at and prior to impact are critical to developing high ball velocity. Since events prior to impact are critical for kick success, coordination and summation of speeds throughout the kicking motion are important factors. Segmental coordination that occurs during a maximal effort kick is critical for completing a successful kick.  相似文献   

5.
A forward dynamics computer simulation for replicating tennis racket/ball impacts is described consisting of two rigid segments coupled with two degrees of rotational freedom for the racket frame, nine equally spaced point masses connected by 24 visco-elastic springs for the string-bed and a point mass visco-elastic ball model. The first and second modal responses both in and perpendicular to the racket string-bed plane have been reproduced for two contrasting racket frames, each strung at a high and a low tension. Ball/string-bed normal impact simulations of real impacts at nine locations on each string-bed and six different initial ball velocities resulted in <3% RMS error in rebound velocity (over the 16–27 m/s range observed). The RMS difference between simulated and measured oblique impact rebound angles across nine impact locations was 1°. Thus, careful measurement of ball and racket characteristics to configure the model parameters enables researchers to accurately introduce ball impact at different locations and subsequent modal response of the tennis racket to rigid body simulations of tennis strokes without punitive computational cost.  相似文献   

6.
This study identified and compared the full body kinematics of different skill levels in the forehand groundstroke when balls were hit cross court and down the line. Forty-three three-dimensional retro-reflective marker trajectories of six elite and seven high-performance players were recorded using an eight-camera 400 Hz, Vicon motion analysis system. The six highest horizontal velocity forehands with reliable kinematics of all participants were analysed for each specific situation (a total of 156 analysed shots). Significant differences (p < 0.01) and large effect sizes were observed between elite and high-performance players in linear velocity of the shoulder (2.0 vs. 1.2 m/s), angular velocity of the pelvis (295 vs. 168 °/s), and angular velocity of the upper trunk (453 vs. 292 °/s) at impact. The elite group showed a tendency towards higher racquet velocities at impact (p < 0.05). No significant differences were found in angular displacement of the racquet, hip alignment, or shoulder alignment at the completion of the backswing; nor did angular displacement vary significantly at impact. Irrespective of the group, different shoulder, hip, and racquet angles were found at impact, depending on the situation. The results should assist coaches when striving to improve their players' forehand.  相似文献   

7.
In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm.  相似文献   

8.
Quantifying soft tissue motion following impact is important in human motion analysis as soft tissues attenuate potentially injurious forces resulting from activities such as running and jumping. This study determined the reliability of leg soft tissue position and velocity following heel impacts. A grid of black dots was applied to the skin of the right leg and foot (n = 20). Dots were automatically detected (ProAnalyst®) from high-speed records of pendulum and drop impacts. Three trained measurers selected columns of dots on each participant for analysis; one measurer 6 months later. Between- and within-measurer differences in kinematic variables were all relatively small (<0.8 cm for position; <3.7 cm/s for velocity) between-measurers and (<0.5 cm for position; <2.6 cm/s for velocity) within-measurer. Good (coefficients of variation (CV) ≤ 10%) to acceptable (CV > 10% and ≤20%) reliability was shown for 95% of the position measures, with mean CVs of 10% and 11% within-measurers and between-measures, respectively. Velocity measures were less reliable; 40% of the measures showed good to marginal (CV > 20% and ≤30%) reliability. This study established that leg soft tissue position data from skin markers could be obtained with good to acceptable reliability following heel impacts. Velocity data were less reliable but still acceptable in many cases.  相似文献   

9.
Soccer kicking training should be adjusted to the characteristics of the athletes. Therefore, examination of differences in kicking kinematics of females and pubertal players relative to males is worthwhile. The purpose of the study was to compare kicking kinematics and segmental sequence parameters between male, female, and pubertal players. Ten adult male, ten adult female, and ten male pubertal players participated in the study. Participants performed five consecutive kicking trials of a stationary ball, as powerful as they could. Analysis of variance showed significantly higher ball velocity, higher joint linear velocities for the knee and the hip, and higher angular velocities of the knee and the ankle for males compared to female and pubertal players (p < 0.05). Similarly, the peak joint velocity was achieved significantly closer to ball impact in males compared to other groups (p < 0.05). Males also showed a more plantarflexed ankle immediately before ball impact (p < 0.05). Females and pubertal players may benefit from skill training aiming to increase ankle plantarflexion and hip flexion prior to ball impact, and to adjust thigh and shank motion, such that the shank–foot segment travels through a higher range of motion and with a greater velocity.  相似文献   

10.
This study aimed to compare the power produced by the flutter-kick action at different swimming velocities. Eighteen high-level male swimmers completed a maximal 15-m flutter-kicking sprint and underwent two tests (one passive and one with maximal flutter-kicking) in which they were towed at six velocities ranging from 1.0 to 2.0 m/s. Power values were computed for each velocity, and selected kinematic indices were evaluated at 1.2 and 2.0 m/s. The highest power (54 ± 8 W) was observed at the velocity at which the drag equaled the propulsive force (1.27 ± 0.08 m/s), which was similar to that recorded in the flutter-kicking sprint (1.26 ± 0.09 m/s). Thereafter, power decreased significantly with increasing velocity, up to 17 ± 10 W (at 2.0 m/s). The angle between the horizontal and the line connecting the highest and lowest points of the malleolus trajectory was significantly wider at 1.2 m/s than at 2.0 m/s (75 ± 4° vs. 63 ± 6°). This could explain the change of power with velocity because all the other kinematic indices considered were similar at the two velocities. These results suggest that the propulsive role of the flutter-kick increases as the swimming velocity decreases.  相似文献   

11.
This study investigated the reliability of a wireless accelerometer and its agreement with optical motion capture for the measurement of root mean square (RMS) acceleration during running. RMS acceleration provides a whole-body metric of movement mechanics and economy. Fifteen healthy college-age participants performed treadmill running for two 60-s trials at 2.22, 2.78, and 3.33 m/s and one trial of 150 s (five 30-s epochs) at 2.78 m/s. We assessed between-trial and within-trial reliability, and agreement in each axis between a trunk-mounted wireless accelerometer and a reflective marker on the accelerometer measured by optical motion capture. Intraclass correlations assessing between-trial repeatability were 0.89–0.97, depending on the axis, and intraclass correlations assessing within-trial repeatability were 0.99–1.00. Bland–Altman analyses assessing agreement indicated mean difference values between ?0.03 and 0.03 g, depending on the axis. Anterio-posterior acceleration had the greatest limits of agreement (LOA) (±0.12 g) and vertical acceleration had the smallest LOA (±0.03 g). For measuring RMS acceleration of the trunk, this wireless accelerometer node provides repeatable and valid measurement compared with the standard laboratory method of optical motion capture.  相似文献   

12.
The use of multi-segment trunk models to investigate the crunch factor in golf may be warranted. The first aim of the study was to investigate the relationship between the trunk and lower trunk for crunch factor-related variables (trunk lateral bending and trunk axial rotation velocity). The second aim was to determine the level of association between crunch factor-related variables with swing (clubhead velocity) and launch (launch angle). Thirty-five high-level amateur male golfers (Mean ± SD: age = 23.8 ± 2.1 years, registered golfing handicap = 5 ± 1.9) without low back pain had kinematic data collected from their golf swing using a 10-camera motion analysis system operating at 500 Hz. Clubhead velocity and launch angle were collected using a validated real-time launch monitor. A positive relationship was found between the trunk and lower trunk for axial rotation velocity (r(35) = .47, < .01). Cross-correlation analysis revealed a strong coupling relationship for the crunch factor (R2 = 0.98) between the trunk and lower trunk. Using generalised linear model analysis, it was evident that faster clubhead velocities and lower launch angles of the golf ball were related to reduced lateral bending of the lower trunk.  相似文献   

13.
Abstract

A completely general three-dimensional dynamic model is presented for the motion of basketball shots that may contact the rim, the backboard, the bridge between the rim and board, and possibly the board and the bridge simultaneously. Non-linear ordinary differential equations with six degrees of freedom describe the ball angular velocity and ball centre position. The model includes radial ball compliance and damping and contains five sub-models: purely gravitational flight, and ball – rim, ball – bridge, ball – board, and ball – bridge – board contact. Each contact sub-model has both slipping and non-slipping motions. Switching between the sub-models depends on the reaction force at, and velocity of, the contact point. Although the model can be used to study shots from any point on the court, we here use it to study the sets of free throw release angle, velocity, angular velocity, and lateral deviation angle that result in success (capture), as well as underhand free throws and those using an under-inflated ball. Free throw shots with larger backspin, lower inflation pressures, and underhand release conditions are shown to result in larger capture percentages.  相似文献   

14.
This investigation assessed whether a Technique Refinement Intervention designed to produce pronounced vertical hip displacement during the kicking stride could improve maximal instep kick performance. Nine skilled players (age 23.7 ± 3.8 years, height 1.82 ± 0.06 m, body mass 78.5 ± 6.1 kg, experience 14.7 ± 3.8 years; mean ± SD) performed 10 kicking trials prior to (NORM) and following the intervention (INT). Ground reaction force (1000 Hz) and three-dimensional motion analysis (250 Hz) data were used to calculate lower limb kinetic and kinematic variables. Paired t-tests and statistical parametric mapping examined differences between the two kicking techniques across the entire kicking motion. Peak ball velocities (26.3 ± 2.1 m · s?1 vs 25.1 ± 1.5 m · s?1) and vertical displacements of the kicking leg hip joint centre (0.041 ± 0.012 m vs 0.028 ± 0.011 m) were significantly larger (P < 0.025) when performed following INT. Further, various significant changes in support and kicking leg dynamics contributed to a significantly faster kicking knee extension angular velocity through ball contact following INT (70–100% of total kicking motion, < 0.003). Maximal instep kick performance was enhanced following INT, and the mechanisms presented are indicative of greater passive power flow to the kicking limb during the kicking stride.  相似文献   

15.
Determining and understanding baseball batting mechanics at various competition levels may help players and coaches identify key kinematics crucial to being a successful hitter. The purpose of this study was to compare batting kinematics across competition levels. Kinematic and temporal data were analysed for 170 male batters (youth n = 33; high school n = 69; college n = 22; professional n = 46) using 3D motion capture (480 Hz). The results showed differences in angular positions between competition levels during the five phases of the swing, with the greatest differences seen between the youth and professional batters. At the instant of ball contact, professional batters held the bat farther away from their body, with greater back shoulder abduction (35°) and less back elbow flexion (78°) compared to youth (27° and 89°, respectively). These differences were associated with greater back elbow extension velocity for professionals (1539°/s) compared to youth (1174°/s). Additionally, higher level batters had higher bat angular and linear velocities compared to the youth batters. As batters progress through their career, they should focus on their back arm by keeping their elbow up and their arm extended in front of them.  相似文献   

16.
Power is a fundamental component for many sporting activities; while the load that elicits peak power during different exercises and differences between sexes remains unclear. This study aims to determine the effect of sex and load on kinematic and kinetic variables during the mid-thigh clean pull. Men (n = 10) and women (n = 10) performed the mid-thigh clean pull at intensities of 40%, 60%, 80%, 100%, 120%, and 140% of one repetition maximum (1RM) power clean in a randomised and counter-balanced order, while assessing bar velocity, bar displacement, power, force, and impulse. Two-way analysis of variance revealed that men demonstrated significantly greater (p < 0.05) values for all variables across loads, excluding bar velocity. Men demonstrated significantly greater (p < 0.05) bar velocities with 40–80% 1RM; in contrast, women demonstrated significantly (p < 0.05) higher velocities with 120–140% 1RM. Irrespective of sex significantly greater (p < 0.05), system peak power, bar velocity, and displacement occurred with 40% 1RM. In contrast, peak force and impulse were significantly (p < 0.05) greater with 140% 1RM. When performing the mid-thigh clean pull, to maximise system power or bar velocity, lower loads (40–60% 1RM) are recommended. When training force production or impulse, higher loads (120–140% 1RM) are recommended, when using the mid-thigh clean pull.  相似文献   

17.
The assessment of sprint velocity is useful for evaluating performance and guiding training interventions. In this paper, we describe an adaptive filtering algorithm to estimate sprint velocity using a single, sacrum-worn magneto-inertial measurement unit. Estimated instantaneous velocity, average 10 m interval velocity, and peak velocity during 40 m sprints from the proposed method were compared to a reference method using photocell position-time data. Concurrent validity of the proposed method was assessed using mean absolute error and mean absolute percent error for all velocity estimates. The significance of the mean error was assessed using a factorial ANOVA for average interval velocity and a paired-samples t test for peak velocity. Reliability was assessed using Bland–Altman 95% limits of agreement for repeated measures. Average interval velocity was underestimated early in the sprint (??0.25 to ??0.05 m/s) and overestimated later (0.13 m/s) with mean absolute error between 0.20 m/s (3.95%) and 0.62 m/s (7.78%). The average mean absolute error was 0.45 m/s (7.02%) for instantaneous velocity and 0.63 m/s (7.84%) for peak velocity. The limits of agreement grew progressively wider at greater distances (??0.59 to 0.34 m/s for 0–10 m and ??1.32 to 1.59 m/s for 30–40 m). The estimation error from the proposed method is comparable to other wearable sensor-based methods and suggests its potential use to assess sprint performance.  相似文献   

18.
The aim of this study was to analyse the kinematic sequencing in the penalty-corner drag-flicks of elite male and female field hockey players of international calibre. Thirteen participants (one skilled male drag-flicker and six male and six female elite players) participated in the study. An optoelectronic motion analysis system was used to capture the drag-flicks with six cameras, sampling at 250 Hz. Select ground reaction force parameters were obtained from a force platform which registered the last support of the front foot. Twenty trials were captured from each subject. Both player groups showed significantly (p < 0.05) smaller ball velocity at release, peak angular velocity of the pelvis, and negative and positive peak angular velocities of the stick than the skilled subject. Normalised ground reaction forces of the gender groups were also smaller than that of the skilled drag-flicker. By comparing these players we established that the cues of the skill level are a wide stance, a whipping action (rapid back lift) of the stick followed by an explosive sequential movement of the pelvis, upper trunk and stick.  相似文献   

19.
Tennis coaches often use the fundamental throwing skill as a training tool to develop the service action. However, recent skill acquisition literature questions the efficacy of non-specific training drills for developing complex sporting movements. Thus, this study examined the mechanical analogy of the throw and the tennis serve at three different levels of development. A 500 Hz, 22-camera VICON MX motion capture system recorded 28 elite female tennis players (prepubescent (n = 10), pubescent (n = 10), adult (n = 8)) as they performed flat serves and overhand throws. Two-way ANOVAs with repeated measures and partial correlations (controlling for group) assessed the strength and nature of the mechanical associations between the tasks. Preparatory mechanics were similar between the two tasks, while during propulsion, peak trunk twist and elbow extension velocities were significantly higher in the throw, yet the peak shoulder internal rotation and wrist flexion angular velocities were significantly greater in the serve. Furthermore, all of these peak angular velocities occurred significantly earlier in the serve. Ultimately, although the throw may help to prime transverse trunk kinematics in the serve, mechanics in the two skills appear less similar than many coaches seem to believe. Practitioners should, therefore, be aware that the throw appears less useful for priming the specific arm kinematics and temporal phasing that typifies the tennis serve.  相似文献   

20.
Consecutive proximal-to-distal sequencing of motion is considered to be integral for generating high velocity of distal segments in many sports. Simultaneous usage of proximal and distal segments as seen in martial arts is by far less well investigated. Therefore, the aim of the study was to characterise and differentiate the concepts of consecutive (CSM) and simultaneous (SSM) sequence of motion in straight reverse punches as practised in Practical Wing Chun. Four experienced martial artists succeeded an eligibility test for technical proficiency in both concepts and performed a total number of 20 straight punches per concept. Eight MX13 Vicon cameras (250 fps) and Visual3D were used for motion capture and analyses. Both motion concepts showed proximal-to-distal sequencing of maximal joint velocities but, in SSM, this was coupled with simultaneous initiation. Key characteristics were: high pelvis momentum and backswing of shoulder and elbow (CSM); and importance of shoulder involvement (SSM). Different ranges of motion, timing aspects and achieved maximal angular velocities distinguished both concepts, which led to differences (p < 0.05) in fist velocity at contact, execution time, distance and horizontal shift of the centre of mass. Proper application of both concepts depends on the environmental setting, situational requirements and individual fighting style.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号