首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased lateral trunk bending to the injured side has been observed when ACL injuries occur. The purpose was to quantify the effect of mid-flight lateral trunk bending on center of mass (COM) positions and subsequent landing mechanics during a jump-landing task. Forty-one recreational athletes performed a jump-landing task with or without mid-flight lateral trunk bending. When the left and right trunk bending conditions were compared with the no trunk bending condition, participants moved the COM of the upper body to the bending direction, while the COM of the pelvis, ipsilateral leg, and contralateral leg moved away from the bending direction relative to the whole body COM. Participants demonstrated increased peak vertical ground reaction forces (VGRF) and knee valgus and internal rotation angles at peak VGRF for the ipsilateral leg, but decreased peak VGRF and knee internal rotation angles at peak VGRF and increased knee varus angles at peak VGRF for the contralateral leg. Mid-flight lateral trunk resulted in an asymmetric landing pattern associated with increased ACL loading for the ipsilateral leg. The findings may help to understand altered trunk motion during ACL injury events and the discrepancy in ACL injuries related to limb dominance in badminton and volleyball.  相似文献   

2.
We investigated the effects of high intensity, intermittent exercise (HIIP) and anticipation on trunk, pelvic and lower limb biomechanics during a crossover cutting manoeuvre. Twenty-eight male, varsity athletes performed crossover cutting manoeuvres in anticipated and unanticipated conditions pre- and post-HIIP. Kinematic and kinetic variables were captured using a motion analysis system. Statistical parametric mapping (repeated-measures ANOVA) was used to identify differences in biomechanical patterns. Results demonstrated that both unanticipation and fatigue (HIIP) altered the biomechanics of the crossover cutting manoeuvre, whereas no interactions effects were observed. Unanticipation resulted in less trunk and pelvic side flexion in the direction of cut (d = 0.70 – 0.79). This led to increased hip abductor and external rotator moments and increased knee extensor and valgus moments with small effects (d = 0.24–0.42), potentially increasing ACL strain. The HIIP resulted in trivial to small effects only with a decrease in internal knee rotator and extensor moment and decreased knee power absorption (d = 0.35), reducing potential ACL strain. The effect of trunk and hip control exercises in unanticipated conditions on the crossover cutting manoeuvre should be investigated with a view to refining ACL injury prevention programmes.  相似文献   

3.
In lateral reactive movements, core stability may influence knee and hip joint kinematics and kinetics. Insufficient core stabilisation is discussed as a major risk factor for anterior cruciate ligament (ACL) injuries. Due to the higher probability of ACL injuries in women, this study concentrates on how gender influences trunk, pelvis and leg kinematics during lateral reactive jumps (LRJs). Perturbations were investigated in 12 men and 12 women performing LRJs under three different landing conditions: a movable landing platform was programmed to slide, resist or counteract upon landing. Potential group effects on three-dimensional trunk, pelvic, hip and knee kinematics were analysed for initial contact (IC) and the time of peak pelvic medial tilt (PPT). Regardless of landing conditions, the joint excursions in the entire lower limb joints were gender-specific. Women exhibited higher trunk left axial rotation at PPT (women: 4.0 ± 7.5°, men: ?3.1 ± 8.2°; p = 0.011) and higher hip external rotation at both IC and PPT (p < 0.01). But women demonstrated higher knee abduction compared to men. Men demonstrated more medial pelvic tilt at IC and especially PPT (men: –5.8 ± 4.9°, women: 0.3 ± 6.3°; p = 0.015). Strategies for maintaining trunk, pelvis and lower limb alignment during lateral reactive movements were gender-specific; the trunk and hip rotations displayed by the women were associated with the higher knee abduction amplitudes and therefore might reflect a movement strategy which is associated with higher injury risk. However, training interventions are needed to fully understand how gender-specific core stability strategies are related to performance and knee injury.  相似文献   

4.
Female athletes are considered to exhibit knee and trunk motion that is characteristic of anterior cruciate ligament (ACL) injury. The aim of this study was to examine the in vivo motion of the trunk and knee during a cutting manoeuvre and determine the relationship between them. All participants (10 male and 10 female college athletes) performed a shuttle run cutting task with the left limb. Trunk inclination (forward and lateral) and knee joint angles (flexion/extension, abduction/adduction, and internal/external tibial rotation) were calculated. Differences between the sexes and associations between knee motion and trunk inclination were examined. An increase in trunk forward inclination was strongly correlated with an increase in knee flexion angle and moderately correlated with a decrease in the excursion of internal tibial rotation. An increase in right trunk lateral inclination was moderately correlated with an increase in excursion of internal tibial rotation. The results also showed differences between the sexes in trunk forward inclination, lateral inclination, and knee flexion angle, but no such differences in knee abduction or internal tibial rotation. Trunk inclination is related to knee flexion and excursion of internal tibial rotation. Female athletes demonstrate a low trunk forward inclination and knee flexion angle, a posture that resembles that of ACL injury.  相似文献   

5.
Abstract

Female athletes are considered to exhibit knee and trunk motion that is characteristic of anterior cruciate ligament (ACL) injury. The aim of this study was to examine the in vivo motion of the trunk and knee during a cutting manoeuvre and determine the relationship between them. All participants (10 male and 10 female college athletes) performed a shuttle run cutting task with the left limb. Trunk inclination (forward and lateral) and knee joint angles (flexion/extension, abduction/adduction, and internal/external tibial rotation) were calculated. Differences between the sexes and associations between knee motion and trunk inclination were examined. An increase in trunk forward inclination was strongly correlated with an increase in knee flexion angle and moderately correlated with a decrease in the excursion of internal tibial rotation. An increase in right trunk lateral inclination was moderately correlated with an increase in excursion of internal tibial rotation. The results also showed differences between the sexes in trunk forward inclination, lateral inclination, and knee flexion angle, but no such differences in knee abduction or internal tibial rotation. Trunk inclination is related to knee flexion and excursion of internal tibial rotation. Female athletes demonstrate a low trunk forward inclination and knee flexion angle, a posture that resembles that of ACL injury.  相似文献   

6.
Unanticipated direction to cut after landing may alter the lower extremity landing biomechanics when performing landing motions. These alterations may potentially increase the risk of ACL injury. The purpose of this study was to determine if an unanticipated side-cut affects lower extremity landing biomechanics in females. Eighteen recreational female athletes participated in two blocks of testing: the first block of testing consisted of three acceptable trials of anticipated dominant limb and non-dominant limb 45-degree diagonal cutting after landing, which were performed in a counterbalanced order. The second block of testing consisted of three acceptable trials of unanticipated dominant limb and non-dominant limb diagonal cutting after landing. Data analysis mainly focused on the dominant limb landing biomechanics. Unanticipated side-cut landing, compared (paired t-test, p < 0.05) to the anticipated landings, resulted in less hip abduction and tibial internal rotation angle at initial contact (IC) and a lower maximum ankle inversion angle and a greater maximum knee abduction angle, and knee and hip displacement. Also, greater posterior GRF and a longer time to peak medial GRF were exhibited. These outcomes indicate that athletes may adapt their landing mechanics to land unsafely when encountering an unanticipated event.  相似文献   

7.
PurposeTo determine the effect of unanticipated mid-flight medial-lateral external perturbation of the upper or lower trunk on anterior cruciate ligament (ACL) loading variables during jump-landings.MethodsThirty-two participants performed double-leg vertical jump-landings while bilateral kinematics and kinetics were collected under 6 conditions (upper or lower trunk perturbation locations; no, left, or right perturbation directions). Two customized catapult apparatuses were created to apply pushing perturbation to participants near the maximal jump height.ResultsThe ball contacted participants near the center of mass for the lower-trunk conditions and approximately 23 cm above the center of mass for the upper-trunk conditions. Under upper-trunk perturbation, the contralateral leg demonstrated significantly smaller knee flexion angles at initial contact and greater peak knee abduction angles, peak vertical ground reaction forces, peak knee extension moments, and peak knee adduction moments compared to other legs among all conditions. Under lower-trunk perturbation, the contralateral leg showed significantly smaller knee flexion angles at initial contact and increased peak vertical ground reaction forces and peak knee extension moments compared to legs in the no-perturbation conditions.ConclusionMid-flight external trunk pushing perturbation increased ACL loading variables for the leg contralateral to the perturbation. The upper-trunk perturbation resulted in greater changes in ACL loading variables compared to the lower-trunk perturbation, likely due to trunk and ipsilateral leg rotation and more laterally located center of mass relative to the contralateral leg. These findings may help us understand the mechanisms of indirect-contact ACL injuries and develop jump-landing training strategies under mid-flight trunk perturbation to better prevent ACL injury.  相似文献   

8.
Landing with a low knee flexion angle after volleyball block jumps may be associated with an increased risk of anterior cruciate ligament (ACL) injury. The aim of the present study was to identify the types of volleyball landings after blocks where the knee flexion angle is found to be under a critical knee flexion angle value of 30° at the instant of the first peak of the ground reaction force (GRF). Synchronized kinematic and kinetic data were collected for each trial. T-tests were used to determine if each knee flexion angle at the instant of the peak GRF was significantly different from the critical value of 30°. A repeated measures ANOVA was used to compare knee flexion angle, time to first peak and the magnitude of the first peak of the resultant GRF and knee stiffness. Significantly lower knee flexion angles were found in the “go” landing (p?=?.01, ES?=?0.6) and the “reverse” landing (p?=?.02, ES?=?0.6) only. The results for knee flexion angle and GRF parameters indicated a significant difference between a “reverse” and “go” and other types of landings, except the “side stick” landing for GRF. The “reverse” and “go” landings may present a risk for ACL injury due to the single-leg landing of these activities that have an associated mediolateral movement.  相似文献   

9.
Anterior cruciate ligament (ACL) injuries in basketball appear to be more common when players are in possession of the ball. The greater risk of ACL injury when in possession of the ball may result from the athlete’s inability to fully attend to their movement. However, it is also possible that having to carry/manipulate the ball restricts the athlete’s ability to utilise their upper extremities for stability during a manoeuvre. The purpose of this study was to explore how possession of a basketball and divided attention influence lower extremity mechanics during cutting and landing. Twenty uninjured females with basketball experience performed a baseline lateral cutting task, as well as lateral cuts while carrying a basketball, with and without a subsequent chest pass. Requiring participants to carry the basketball in isolation (i.e., without the additional pass) had minimal influence on lower extremity mechanics compared to baseline. However, participants demonstrated less knee flexion (40.9° vs. 47.3°) and greater knee abduction (12.2° vs. 10.1°) for trials that included the additional pass (divided attention condition) compared to trials conducted while carrying the basketball in isolation. Athletes may be at greater risk for ACL injury when they are unable to solely attend to their movement.  相似文献   

10.
Abstract

Anticipatory postural adjustments (APAs), i.e. preparatory positioning of the head, the trunk and the foot, are essential to initiate cutting manoeuvres during football games. The aim of the present study was to determine how APA strategies during cutting manoeuvres are influenced by a reduction of the time available to prepare the movement.

Thirteen football players performed different cutting tasks, with directions of cutting either known prior to the task or indicated by a light signal occurring 850, 600 or 500 ms before ground contact.

With less time available to prepare the cutting manoeuvre, the head was less orientated towards the cutting direction (P = 0.033) and the trunk was even more rotated in the opposite direction (P = 0.002), while the foot placement was not significantly influenced. Moreover, the induced higher lateral trunk flexion correlated with the increased knee abduction moment (r = 0.41; P = 0.009).

Increasing lateral trunk flexion is the main strategy used to successfully perform a cutting manoeuvre when less time is available to prepare the movement. However, higher lateral trunk flexion was associated with an increased knee abduction moment and therefore an increased knee injury risk. Reducing lateral trunk flexion during cutting manoeuvres should be part of training programs seeking the optimisation of APAs.  相似文献   

11.
ABSTRACT

Field-based screening methods have a limited capacity to identify high-risk postures during netball-specific landings associated with anterior cruciate ligament (ACL) injuries. This study determined the biomechanical relationship between a single-leg squat and netball-specific leap landing, to examine the utility of including a single-leg squat within netball-specific ACL injury risk screening. Thirty-two female netballers performed single-leg squat and netball-specific leap landing tasks, during which three-dimensional (3D) kinematic/kinetic data were collected. One-dimensional statistical parametric mapping examined relationships between kinematics from the single-leg squat, and the 3D joint rotation and moment data from leap landings. Participants displaying reduced hip external rotation, reduced knee flexion, and greater knee abduction and knee internal rotation angles during the single-leg squat exhibited these same biomechanical characteristics during the leap landing (p < 0.001). Greater ankle dorsiflexion during the single-leg squat was associated with greater knee flexion during landing (p < 0.001). Ankle eversion during the single-leg squat was associated with frontal and transverse plane knee biomechanics during landing (p < 0.001). Biomechanics from the single-leg squat were associated with landing strategies linked to ACL loading or injury risk, and thus may be a useful movement screen for identifying netball players who exhibit biomechanical deficits during landing.  相似文献   

12.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

13.
High impact forces during gymnastic landings are thought to contribute to the high rate of injuries. Lower limb joint flexion is currently limited within gymnastic rules, yet might be an avenue for reduced force absorption. This study investigated whether lower limb flexion during three gymnastic landings was related to force. Differences between landings were also explored. Twenty-one elite women's artistic gymnasts performed three common gymnastic techniques: drop landing (DL), front and back somersaults. Ankle, knee, and hip angles, and vertical ground reaction force [(vGRF) magnitude and time to peak], were measured using three-dimensional motion analysis and force platform. The DL had significantly smaller peak vGRF, greater time to peak vGRF and larger lower limb flexion ranges than landing from either somersault. Peak vGRF and time to peak vGRF were inversely related. Peak vGRF was significantly reduced in gymnasts who landed with greater hip flexion, and time to peak was significantly increased with increasing ankle, knee, and hip flexion. Increased range of lower limb flexion should be encouraged during gymnastic landings to increase time to peak vGRF and reduce high impact force. For this purpose, judging criteria limitations on lower limb flexion should be reconsidered.  相似文献   

14.
15.
ABSTRACT

Knee joint coordination during jump landing in different directions is an important consideration for injury prevention. The aim of the current study was to investigate knee and hip kinematics on the non-dominant and dominant limbs during landing. A total of 19 female volleyball athletes performed single-leg jump-landing tests in four directions; forward (0°), diagonal (30° and 60°) and lateral (90°) directions. Kinematic and ground reaction force data were collected using a 10-camera Vicon system and an AMTI force plate. Knee and hip joint angles, and knee angular velocities were calculated using a lower extremity model in Visual3D. A two factor repeated measures ANOVA was performed to explore limb dominance and jump direction. Significant differences were seen between the jump directions for; angular velocity at initial contact (p < 0.001), angular velocity at peak vertical ground reaction force (p < 0.001), and knee flexion excursion (p = 0.016). Knee coordination was observed to be poorer in the early phase of velocity-angle plot during landing in lateral direction compared to forward and diagonal directions. The non-dominant limb seemed to have better coordination than the dominant limb during multi-direction jump landing. Therefore, dominant limbs appear to be at a higher injury risk than non-dominant limbs.  相似文献   

16.
Abstract

Numerous studies have investigated anterior cruciate ligament (ACL) injury risk by examining gender differences in knee and hip biomechanics during a side-step cutting manoeuvre since it is known that ACL injury often occurs during such a task. Recent investigations have also examined lower extremity (LE) biomechanics during side-step cutting in individuals following ACL reconstruction (ACLR). Common research practice is to compare knee and hip biomechanics of the dominant limb between groups but this can add considerable complexity for clinicians and researchers. At this time, it is not known if there is a difference in LE biomechanics between the dominant and non-dominant limb during side-step cutting. Three-dimensional kinematics and kinetics were collected while 31 healthy participants performed five, side-step cutting manoeuvres with the dominant and non-dominant limbs. Knee and hip variables examined are those commonly investigated in ACL injury literature. There were no differences between limbs in all but one variable (knee internal rotation). These results demonstrate that healthy individuals exhibit little side-to-side differences in certain LE biomechanics when performing a side-step cutting manoeuvre. These findings can be utilised by clinicians when conducting dynamic evaluations of their ACLR patients and when developing injury prevention and rehabilitation programmes.  相似文献   

17.
Although landing in a plantarflexion and inversion position is a well-known characteristic of lateral ankle sprains, the associated kinematics of the knee and hip is largely unknown. Therefore, the purpose of this study was to examine the changes in knee and hip kinematics during landings on an altered landing surface of combined plantarflexion and inversion. Participants performed five drop landings from 30 cm onto a trapdoor platform in three different conditions: flat landing surface, 25° inversion, or a combined 25° plantarflexion and 25° inversion. Kinematic data were collected using a seven camera motion capture system. A 2 × 3 (leg × surface) repeated measures ANOVA was used for statistical analysis. The combined surface showed decreased knee and hip flexion range of motion (ROM) and increased knee abduction ROM (p < 0.05). The altered landing surface creates a stiff landing pattern where reductions in sagittal plane motion are transferred to the frontal plane, resulting in increased knee abduction. A stiff landing pattern is frequently related to increased risk of anterior cruciate ligament injury. It may be beneficial for athletes at risk to train for alternate methods of increasing their sagittal plane motion of the knee and hip with active knee or trunk flexion.  相似文献   

18.
The effectiveness of vertical drop jumps (VDJs) to screen for non-contact ACL injuries is unclear. This may be contributed to by discrete point analysis, which does not evaluate patterns of movement. Also, limited research exists on the second landing of VDJs, potential lower limb performance asymmetries and the effect of fatigue. Statistical parametric mapping investigated the main effects of landing, limb dominance and a high intensity, intermittent exercise protocol (HIIP) on VDJ biomechanics. Twenty-two male athletes (21.9 ± 1.1 years, 180.5 ± 5.5 cm, 79.4 ± 7.8 kg) performed VDJs pre- and post-HIIP. Repeated measures ANOVA identified pattern differences during the eccentric phases of the first and second landings bilaterally. The first landing displayed greater (internal) knee flexor (η2 = 0.165), external rotator (η2 = 0.113) and valgus (η2 = 0.126) moments and greater hip (η2 = 0.062) and knee (η2 = 0.080) flexion. The dominant limb generated greater knee flexor (η2 = 0.062), external rotator (η2 = 0.110) and valgus (η2 = 0.065) moments. The HIIP only had one effect, increased thoracic flexion relative to the pelvis (η2 = 0.088). Finally, the dominant limb demonstrated greater knee extensor moments during the second landing (η2 = 0.100). ACL injury risk factors were present in both landings of VDJs with the dominant limb at potentially greater injury risk. Therefore, VDJ screenings should analyse both landings bilaterally.  相似文献   

19.
The purpose of this study was to investigate possible footfall pattern changes in habitual forefoot runners over a prolonged, exhaustive run. A prolonged run was performed to exhaustion in 14 habitual forefoot runners. Vertical ground reaction forces (VGRFs) and kinematics were collected at the beginning and end of the run. Ankle plantar flexor torque and triceps surae electromyographic activity were measured during pre- and post-run isometric contractions. By run’s end, there was an increase in VGRF loading rate and impact peak magnitude, greater dorsiflexion at foot contact and greater knee flexion angle throughout stance. Ankle plantar flexor torque decreased significantly from pre- to post-run tests. This was accompanied by a decrease in the integrated electromyographic activity (iEMG) output for the lateral and medial gastrocnemius. There were significant changes in landing mechanics for forefoot runners that indicate a transition towards more midfoot footfall patterns. A contributing factor may be ankle plantar flexor muscle fatigue that, at touchdown, is exposed to exaggerated eccentric loading. These findings suggest that a forefoot running pattern may become difficult to maintain in longer endurance events, and thus runners should pay attention to this in training to improve performance and mitigate potential injury.  相似文献   

20.
ABSTRACT

The purpose was to quantify the effects of mid-flight whole-body and trunk rotation on knee mechanics in a double-leg landing. Eighteen male and 20 female participants completed a jump-landing-jump task in five conditions: no rotation, testing leg ipsilateral or contralateral (WBRC) to the whole-body rotation direction, and testing leg ipsilateral (TRI) or contralateral to the trunk rotation direction. The WBRC and TRI conditions demonstrated decreased knee flexion and increased knee abduction angles at initial contact (2.6 > Cohen’s dz > 0.3) and increased peak vertical ground reaction forces and knee adduction moments during the 100 ms after landing (1.7 > Cohen’s dz > 0.3). The TRI condition also showed the greatest knee internal rotation angles at initial contact and peak knee abduction and internal rotation angles and peak knee extension moments during the 100 ms after landing (2.0 > Cohen’s dz > 0.5). Whole-body rotation increased contralateral knee loading because of its primary role in decelerating medial-lateral velocities. Trunk rotation resulted in the greatest knee loading for the ipsilateral knee due to weight shifting and mechanical coupling between the trunk and lower extremities. These findings may help understand altered trunk motion in anterior cruciate ligament injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号