首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
ABSTRACT

This study examined the effect of wearing time on comfort perception and landing biomechanics of basketball shoes with different midsole hardness. Fifteen basketball players performed drop landing and layup first step while wearing shoes of different wearing time (new, 2-, 4-, 6- and 8-week) and hardness (soft, medium and hard). Two-way ANOVA with repeated measures was performed on GRF, ankle kinematic and comfort perception variables. Increased wearing time was associated with poorer force attenuation and comfort perception during landing activities (p < 0.05). The new shoes had significantly smaller forefoot (2- and 4-week) and rearfoot peak GRF impacts (all time conditions) in drop landing and smaller rearfoot peak GRF impact (6- and 8-week) in layup; shoes with 4-week of wearing time had significantly better perceptions of forefoot cushioning, forefoot stability, rearfoot cushioning, rearfoot stability and overall comfort than the new shoes (p < 0.05). Compared with hard shoes, the soft shoes had better rearfoot cushioning but poorer forefoot cushioning (p < 0.05). Shoe hardness and wearing time would play an influential role in GRF and comfort perception, but not in ankle kinematics. Although shoe cushioning performance would decrease even after a short wearing period, the best comfort perception was found at 4-week wearing time.  相似文献   

2.
Shoe manufacturers launch running shoes with increased (e.g., maximalists) or decreased (e.g., minimalists) midsole thickness and claim that they may prevent running injury. Previous studies tested footwear models with different midsole thicknesses on the market but the shoe construct was not strictly comparable. Therefore, in the present study, we examined the effect of midsole thickness, from 1-mm to 29-mm, in a standard test shoe prototype on the vertical loading rates, footstrike angle and temporal spatial parameters in distance runners. Fifteen male habitual rearfoot strikers were recruited from local running clubs. They were asked to run on an instrumented treadmill in shoes with different midsole thicknesses. We found significant interactions between midsole thickness with vertical loading rates (< 0.001), footstrike angle (= 0.013), contact time (< 0.001), cadence (= 0.003), and stride length (= 0.004). Specifically, shoes with thinner midsole (1- and 5-mm) significantly increased the vertical loading rates and shortened the contact time, when compared with thicker midsole shoes (25- and 29-mm). However, we did not observe any substantial differences in the footstrike angle, cadence and stride length between other shod conditions. The present study provides biomechanical data regarding the relationship between full spectrum midsole thicknesses and running biomechanics in a group of rearfoot strikers.  相似文献   

3.
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (= 0.003; Cohen’s = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (= 0.191–0.258; Cohen’s = 0.304–0.460). Initial vertical stiffness (= 0.032; Cohen’s = 0.671) and energy loss (= 0.044; Cohen’s = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness.  相似文献   

4.
Abstract

This study investigates the effect of running shoes’ aging on mechanical and biomechanical parameters as a function of midsole materials (viscous, intermediate, elastic) and ground inclination. To this aim, heel area of the shoe (under calcaneal tuberosity) was first mechanically aged at realistic frequency and impact magnitudes based on a 660 km training plan. Stiffness (ST) and viscosity were then measured on both aged and matching new shoes, and repercussions on biomechanical variables (joint kinematics, muscular pre-activation, vertical ground reaction force and tibial acceleration) were assessed during a leg-extended stepping-down task designed to mimic the characteristics of running impacts. Shoes’ aging led to increased ST (means: from 127 to 154 N ? mm?1) and decreased energy dissipation (viscosity) (means: from 2.19 to 1.88 J). The effects induced by mechanical changes on body kinematics were very small. However, they led with the elastic shoe to increased vastus lateralis pre-activation, tibial acceleration peak (means: from 4.5 g to 5.2 g) and rate. Among the three shoes tested, the shoe with intermediate midsole foam provided the best compromise between viscosity and elasticity. The optimum balance remains to be found for the design of shoes regarding at once cushioning, durability and injury prevention.  相似文献   

5.
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as “minimalist” by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot–/shoe–ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s?1 on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.  相似文献   

6.
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h?1 in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h?1 (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.  相似文献   

7.
Abstract

Ethylene vinyl acetate and polyurethane are widely used materials for shoe midsoles. The present study investigated the durability of running shoes made from ethylene vinyl acetate and one type of polyurethane (polyurethane-1), which have similar hardness and density, and another type of polyurethane (polyurethane-2), which has high hardness/density. All shoes differed from one another only in terms of the midsole material used. Eight male runners participated in the present study and used the shoes to run 500 km (10 × 50 km). The cushioning and energy return characteristics of each shoe were measured using an impact tester before and after each 50-km run. The results showed that as the running distance increased, the peak force of midsole materials changed with different patterns. Ethylene vinyl acetate and polyurethane-1 showed greater cushioning than polyurethane-2 over 500 km (ethylene vinyl acetate, 918.2–968.0 N; polyurethane-1, 909.6–972.9 N; polyurethane-2, 983.0–1105.6 N). Polyurethane-1 showed greater cushioning from 200 km to 300 km compared with 0 km (0 km, 972.9 ± 66.3 N; 200 km, 909.6 ± 61.2 N; 250 km, 921.9 ± 51.2 N; 300 km, 924.6 ± 51.9 N). The cushioning of ethylene vinyl acetate shoes was diminished after 500 km compared with that at 0 km (968.0 ± 25.9 N vs. 921.1 ± 20.1 N). Ethylene vinyl acetate resulted in greater energy returns than polyurethane. Both foam category and hardness/density affected the critical biomechanical properties of running shoes.  相似文献   

8.
ABSTRACT

This study aimed to explore the plantar loading variables between habitual rearfoot strike (RFS) and non-rearfoot strike (NRFS) during running. 78 healthy males participated in this study (41 RFS, 37 NRFS). In-shoe pressure sensors were used to measure plantar loading while the participants were running on a 15 m indoor runway with their preferred foot strike pattern (FSP) at 12.0 ± 5% km/h. Results indicate that force and pressure parameters were much higher in the rearfoot and midfoot regions during RFS running and relatively greater in forefoot region during NRFS running. However, compared with NRFS running, the contact area, maximum force and force-time-integrals during RFS running on total foot were 21.44% (P < 0.001, ES = 2.29), 13.99% (P = 0.006, ES = 0.64) and 21.27% (P < 0.001, ES = 0.85) higher, respectively. Total foot peak pressure and pressure-time-integral between two FSPs were similar. Higher loads in the rearfoot region may transmit to the knee joint and result in patellofemoral joint injuries. NRFS runners’ higher loads in forefoot seem to be ralated to metatarsal stress fractures and compensatory damage to the Achilles tendon. Therefore, runners should choose proper FSPs according to their unique physical conditions.  相似文献   

9.
10.
Metatarsal and midfoot injuries are common in American football. Footwear design may influence injury rates by altering plantar foot loading patterns in these regions. The purpose of this study was to determine the effect of cleat design on in-shoe plantar foot loading during a football-specific, resisted pushing task. Twenty competitive football players (age 14.7 ± 1.8 years, height 1.72 ± 0.10 m, and mass 71.8 ± 26.9 kg) completed three trials of pushing a weighted sled at maximal effort in a standard shoe (CLEAT) and artificial turf-specific shoe (TURF), with flexible in-shoe force measuring insoles. Repeated measures ANOVAs identified mean differences in maximum force and relative load under all regions of the foot. Results showed higher forces in the CLEAT under the medial (p < 0.001) and lateral (p = 0.004) midfoot, central (p = 0.007) and lateral (p < 0.001) forefoot, and lesser toes (p = 0.01), but lower forces in the hallux (p = 0.02) compared to the TURF shoe. Additionally, relative loading was higher in the CLEAT under the medial (p < 0.001) and lateral (p = 0.002) midfoot and lateral (p < 0.001) forefoot, but lower in the medial forefoot (p = 0.006) and hallux (p < 0.001) compared to the TURF shoe. The two shoes elicited distinct plantar loading profiles and may influence shoe selection decisions during injury prevention or rehabilitation practices.  相似文献   

11.
This study investigated whether an increase in the forefoot bending stiffness of a badminton shoe would positively affect agility, comfort and biomechanical variables during badminton-specific movements. Three shoe conditions with identical shoe upper and sole designs with different bending stiffness (Flexible, Regular and Stiff) were used. Elite male badminton players completed an agility test on a standard badminton court involving consecutive lunges in six directions, a comfort test performed by a pair of participants conducting a game-like practice trial and a biomechanics test involving a random assignment of consecutive right forward lunges. No significant differences were found in agility time and biomechanical variables among the three shoes. The players wearing the shoe with a flexible forefoot outsole demonstrated a decreased perception of comfort in the forefoot cushion compared to regular and stiffer conditions during the comfort test (p < 0.05). The results suggested that the modification of forefoot bending stiffness would influence individual perception of comfort but would not influence performance and lower extremity kinematics during the tested badminton-specific tasks. It was concluded that an optimisation of forefoot structure and materials in badminton shoes should consider the individual’s perception to maximise footwear comfort in performance.  相似文献   

12.
In this study, we evaluated the protective functions of cloth sport shoes, including cushioning and lateral stability. Twelve male students participated in the study (mean ± s: age 12.7 ± 0.4 years, mass 40.7 ± 5.9 kg, height 1.50 ± 0.04 m). Cloth sport shoes, running shoes, basketball shoes, cross-training shoes, and barefoot conditions were investigated in random sequence. Human pendulum and cutting movement tests were used to assess cushioning performance and lateral stability, respectively. For cushioning, the running shoes (2.06 body weight, BW) performed the best, while the cross-training shoes (2.30 BW) and the basketball shoes (2.37 BW) both performed better than the cloth sport shoes (2.55 BW) and going barefoot (2.63 BW). For the lateral stability test, range of inversion–eversion was found to be from 3.6 to 4.9°, which was far less than that for adult participants (> 20°). No significant differences were found between conditions. All conditions showed prolonged durations from foot-strike to maximum inversion (66–95 ms), which was less vigorous than that for adult participants ( < 40 ms) and was unlikely to evoke intrinsic stability failure. In conclusion, the cloth sport shoe showed inferior cushioning capability but the same lateral stability as the other sports shoes for children.  相似文献   

13.
ABSTRACT

This study examined the effects of shoe collar-height and counter-stiffness on ground reaction force (GRF), ankle and knee mechanics in landing. Eighteen university basketball players performed drop landing when wearing shoes in different collar height (high vs. low) and counter-stiffness (stiffer vs. less stiff). Biomechanical variables were measured with force platform and motion capturing systems. Two-way repeated measures ANOVA was performed with α = 0.05. Wearing high collar shoes exhibited smaller peak ankle dorsiflexion and total sagittal RoM, peak knee extension moment, but larger peak knee varus moment than the low collar shoes. Stiffer counter-stiffness shoes related to smaller ankle inversion at touchdown and total coronal RoM, but larger peak knee flexion and increased total ankle and knee sagittal RoM than the less stiff counter-stiffness. Furthermore, wearing stiffer counter-stiffness shoes increased forefoot GRF peak at high collar condition, while no significant differences between counter-stiffness at low collar condition. These results suggest that although higher collar height and/or stiffness heel counter used can reduce ankle motion in coronal plane, it would increase the motion and loading at knee joint, which is susceptible to knee injuries. These findings could be insightful for training and footwear development in basketball.  相似文献   

14.
The objective was to investigate the relationship between Catechol-O-methyltransferase (COMT) rs4680 and serotonin-transporter-linked polymorphic region (5-HTTLPR) genotypes with concussion history and personality traits. Rugby players (“all levels”: n = 303), from high schools (“junior”, n = 137), senior amateur, and professional teams (“senior”, n = 166), completed a self-reported concussion history questionnaire, Cloninger’s Tridimensional Personality Questionnaire, and donated a DNA sample. Participants were allocated into control (non-concussed, n = 140), case (all) (previous suspected or diagnosed concussions, n = 163), or case (diagnosed only) (previous diagnosed concussion, n = 140) groups. COMT rs4680 Val/Val genotypes were over-represented in controls in all levels (= 0.013, OR:2.00, 95% CI:1.15–3.57) and in juniors (= 0.003, OR:3.57, 95% CI:1.45–9.09). Junior Val/Val participants displayed increased “anticipatory worry” (= 0.023). The 5-HTTLPR low expressing group was under-represented in controls when all levels were considered (= 0.032; OR:2.02, 95% CI:1.05–3.90) and in juniors (= 0.021; OR:3.36, 95% CI:1.16–9.72). Junior 5-HTTLPR low and intermediate expressing groups displayed decreased “harm avoidance” (= 0.009), “anticipatory worry” (= 0.041), and “fear of uncertainty” (< 0.001). This study provides preliminary indications that personality associated genetic variants can influence concussion in rugby.  相似文献   

15.
ABSTRACT

Loading rates have been linked to running injuries, revealing persistent impact features that change direction among three-dimensional axes in different footwear and footstrike patterns. Extracting peak loads from ground reaction forces, however, can neglect the time-varying loading patterns experienced by the runner in each footfall. Following footwear and footstrike manipulations during laboratory-based overground running, we examined three-dimensional loading rate-time features in each direction (X, Y, Z) using principal component analysis. Twenty participants (9 M, 11 F, age: 25.3 ± 3.6 y) were analysed during 14 running trials in each of two footwear (cushioned and minimalist) and three footstrike conditions (forefoot, midfoot, rearfoot). Two principal components (PC) captured the primary loading rate-time features (PC1: 42.5% and PC2: 22.8% explained variance) and revealed interaction among axes, footwear, and footstrike conditions (PC1: F (2.1, 40.1) = 5.6, p = 0.007, η 2 = 0.23; PC2: F (2.0, 38.4) = 62.3, p < 0.001, η 2 = 0.77). Rearfoot running in cushioned footwear attenuated impact loads in the vertical direction, and forefoot running in minimalist footwear attenuated impact loads in the anterior-posterior and medial-lateral directions relative to forefoot running in cushioned shoes. Loading patterns depend on footwear and footstrike interactions, which require shoes that match the runner’s footstrike pattern.  相似文献   

16.
Carbohydrate (CHO) ingestion enhances “feel-good” responses during acute exercise but no study has examined the effect of regular ingestion of CHO on affective valence. We investigated the effect of CHO ingestion on perceptual responses and perceived work intensity of individual exercise sessions throughout a 10-week cycling (“spin”) exercise intervention. We also assessed whether any changes in affect and/or perceived work intensity would influence health and fitness parameters. Twelve recreational exercisers (46 ± 9 years; nine females and three males) were randomly allocated to either CHO (7.5% CHO; 5 mL · kg?1 per exercise session; n = 6; CHO) or placebo (0% CHO, taste- and volume-matched solution; n = 6; PLA) groups. Participants exercised 2 × 45-min per week, over a 10-week intervention period. Perceptual measures of exertion (RPE), affect (feeling scale, FS) and activation (felt arousal scale, FAS) were assessed after each exercise session. The FAS ratings increased over time in CHO but decreased throughout the intervention in PLA (= 0.03). There were no differences in heart rate (= 0.70), RPE (= 0.05) and FS (= 0.84) between trials. Furthermore, no changes in health and fitness parameters were observed over time or between groups. CHO ingestion enhanced ratings of activation in recreational exercisers throughout a 10-week cycling intervention.  相似文献   

17.
Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8?mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (?73%, p?=?.005) but increased peak ankle plantarflexors moment (+47%, p?=?.050) and peak ankle power absorption (+107%, p?=?.005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.  相似文献   

18.
We examined the influence of caffeine supplementation on cognitive performance and perceptual responses in female team-game players taking low-dose monophasic oral contraceptives of the same hormonal composition. Ten females (24 ± 4 years; 59.7 ± 3.5 kg body mass; 2–6 training sessions per week) took part in a randomised, double-blind, placebo-controlled crossover-design trial. A 90-min intermittent treadmill-running protocol was completed 60 min following ingestion of a capsule containing either 6 mg ? kg?1 anhydrous caffeine or artificial sweetener (placebo). Perceptual responses (ratings of perceived exertion (RPE), feeling scale (FS), felt arousal scale (FAS)), mood (profile of mood states (POMS)) and cognitive performance (Stroop test, choice reaction time (CRT)) were completed before, during and after the exercise protocol, as well as after ~12 h post exercise. Caffeine ingestion significantly enhanced the ratings of pleasure (= 0.008) and arousal (= 0.002) during the exercise protocol, as well as increased vigour (POMS; = 0.007), while there was a tendency for reduced fatigue (POMS; = 0.068). Caffeine ingestion showed a tendency to decrease RPE (= 0.068) and improve reaction times in the Stroop (= 0.072) and CRT (= 0.087) tests. Caffeine supplementation showed a positive effect on perceptual parameters by increasing vigour and a tendency to decrease fatigue during intermittent running activity in female games players taking low-dose monophasic oral contraceptive steroids (OCS).  相似文献   

19.
An evaluation of a six-week Combined minimal footwear transition and gait-retraining combination vs. gait retraining only on impact characteristics and leg stiffness. Twenty-four trained male runners were randomly assigned to either (1) Minimalist footwear transition Combined with gait-retraining over a six-week period (“Combined” group; n = 12) examined in both footwear, or (2) a gait-retraining group only with no minimalist footwear exposure (“Control”; n = 12). Participants were assessed for loading rate, impact peak, vertical, knee and ankle stiffness, and foot-strike using 3D and kinetic analysis. Loading rate was significantly higher in the Combined group in minimal shoes in pre-tests compared to a Control (P ≤ 0.001), reduced significantly in the Combined group over time (P ≤ 0.001), and was not different to the Control group in post-tests (P = 0.16). The impact peak (P = 0.056) and ankle stiffness reduced in both groups (P = 0.006). Loading rate and vertical stiffness was higher in minimalist footwear than conventional running shoes both pre (P ≤ 0.001) and post (P = 0.046) the intervention. There has a higher tendency to non-rearfoot strike in both interventions, but more acute changes in the minimalist footwear. A Combined intervention can potentially reduce impact variables. However, higher loading rate initially in minimalist footwear may increase the risk of injury in this condition.  相似文献   

20.
Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (= 0.001) and posterior thigh (< 0.001) rotations, resulting in a smaller knee flexion range of motion (< 0.001). At maximum squat depth, ankle plantar flexor (< 0.001) and knee extensor (< 0.001) NJM were higher in unrestricted squats. Hip extensor NJM (= 0.14) was not different between squat types at maximum squat depth. Vastus lateralis (> 0.05), vastus medialis (> 0.05) and rectus femoris (> 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号