首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000?Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.  相似文献   

2.
Direction of spin axis and spin rate of the pitched baseball   总被引:1,自引:0,他引:1  
In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.  相似文献   

3.
According to recent motor control studies, it is important to know probabilistic structure of his/her own motor errors to choose an optimal motor plan (i.e., where you aim at) to maximise the expected gain. In this study, we questioned if pitching form determines the probabilistic structure of pitching errors in baseball pitchers. Eighteen collegiate baseball pitchers with various pitching forms including right- and left-handed overarm, sidearm and underarm throwers threw 100 pitches aiming at a target located 90 cm above the ground. Two dimensional distribution of pitch location was fitted by using bivariate normal distribution and 95% confidence ellipse was calculated. In order to quantify the pitching form, the direction of the throwing arm trajectory in frontal plane was calculated. The direction of the long axis was dependent on each participant’s pitching form (e.g., right overarm pitchers pitched along a right-up–left-down ellipse and left overarm pitchers pitched along a left-up–right-down ellipse). This was confirmed by circular correlation analysis (P = 0.98). These results suggest that different mechanisms, potentially errors in pitching mechanics and errors in ball release timing, might contribute to errors along the long axis and those along the short axis.  相似文献   

4.
Flight dynamics of the screw kick in rugby   总被引:1,自引:1,他引:0  
This paper describes the aerodynamic forces and the flight trajectory for the screw (spiral) kick in rugby. The screw kick is defined as that which causes the ball to spin on its longitudinal axis. The aerodynamic forces acting on a rugby ball spinning on its longitudinal axis were measured in a wind tunnel using a six-component strut type balance. It was found that the drag, the lift and the pitching moment depend on the angle of attack, while the side force (Magnus force) depends on both the spin rate and the angle of attack in the range where the wind speed lies between 15 and 30 m s-1 and the spin rate is between 1 and 10 revolutions per second. Moreover, the flight trajectory was obtained by integrating the full nonlinear six degrees of freedom equations of motion on the basis of aerodynamic data. In a simulation, a ball spinning on its longitudinal axis tended to hook toward or away from the touchline even if the velocity and angular velocity vectors were parallel to the touchline. The direction of the hook depends on the direction of the angular velocity vector. The initial direction of the hook depends on the relationship between the flight path angle and the pitch angle as well as the direction of the angular velocity vector.  相似文献   

5.
Measurements are presented of drag and lift on new tennis balls in flight. Two video cameras were used to measure the velocity and height of the balls at two positions separated horizontally by 6.4 m. The balls were fired from a ball launcher at speeds between 15 and 30 m/s and with topspin or backspin at rates up to 2,500 rpm. Significant shot-to-shot variations were found in both the drag and lift coefficients. The average drag coefficient was 0.507 ± 0.024, independent of ball speed or spin, and lower than the value usually observed in wind tunnel experiments. The lift coefficient increased with ball spin, on average, but significant lift was observed even at very low spin. The latter effect can be attributed to a side force arising from asymmetries in the ball surface, analogous to the side force responsible for the erratic path of a knuckleball in baseball.  相似文献   

6.
The purpose of this study was to determine how often flaws in pitching mechanics identified from biomechanical analysis are corrected. The biomechanics of 46 baseball pitchers were evaluated twice, with an average of 12 months (range 2–48 months) between evaluations. Pitchers were healthy at the time of both evaluations, competing at the high school, college, minor league or Major League level. After warming up, each participant pitched 10 full-effort fastballs. Automated three-dimensional motion analysis was used to compute eight kinematic parameters which were compared with a database of elite professional pitchers. Flaws—defined as deviations from the elite range—were explained to each participant or coach after his initial evaluation. Data from the second evaluation revealed that 44% of all flaws had been corrected. Flaws at the instant of foot contact (stride length, front foot position, shoulder external rotation, shoulder abduction, elbow flexion) or slightly after foot contact (time between pelvis rotation and upper trunk rotation) seemed to be corrected more often than flaws near the time of ball release (knee extension and shoulder abduction). Future research may determine which level athletes or which training methods are most effective for correcting flaws.  相似文献   

7.
Controversy continues whether curveballs are stressful for young baseball pitchers. Furthermore, it is unproven whether professional baseball pitchers have fewer kinematic differences between fastballs and off-speed pitches than lower level pitchers. Kinematic and kinetic data were measured for 111 healthy baseball pitchers (26 youth, 21 high school, 20 collegiate, 26 minor league, and 18 major league level) throwing fastballs, curveballs, and change-ups in an indoor biomechanics laboratory with a high-speed, automated digitising system. Differences between pitch types and between competition levels were analysed with repeated measures ANOVA. Shoulder and elbow kinetics were greater in fastballs than in change-ups, while curveball kinetics were not different from the other two types of pitches. Kinematic angles at the instant of ball release varied between pitch types, while kinematic angles at the instant of lead foot contact varied between competition levels. There were no significant interactions between pitch type and competition level, meaning that kinetic and kinematic differences between pitch types did not vary by competition level. Like previous investigations, this study did not support the theory that curveballs are relatively more stressful for young pitchers. Although pitchers desire consistent kinematics, there were differences between pitch types, independent of competition level.  相似文献   

8.
Abstract

Nine- to 10-year-old children have difficulty playing baseball using adult rules because pitchers lack the ability to throw the ball over the plate with consistency and batters lack ability to hit erratically thrown balls. Thus a natural field experiment investigated a modification of adult baseball for 9- to 10-year-old children. Instead of one of the players on the opposing team pitching, the coach of the offensive team pitched to the batters. Teams in a league who played baseball by adult rules (traditional league) were compared with teams in a league who played the modified game (nontraditional league), and both these leagues were compared with 11- to 12-year-old teams (older league). Various offensive and defensive activities were recorded by two observers and satisfaction scores were obtained from the players after the games. More offensive and defensive activity occurred in the nontraditional league games than in the traditional and older league games.  相似文献   

9.
The objectives of this study were to investigate middle finger movements and dynamics of ball movements around the instant of ball release during baseball pitching. Baseball pitching from an indoor mound among 14 semi-professional pitchers was captured using a motion capture system with 16 high-speed cameras (1,000 Hz). Kinematics of middle finger joints, ball rotation, and force applied to the ball were calculated. The proximal and distal interphalangeal joints continued to extend until the instant of ball release, then abruptly flexed. The abrupt flexion lasted for only several milliseconds, followed by a short extension phase. The finger made a quick double cycle of extension-flexion movement, suggesting that it attained high stiffness resulting from co-contraction. The ball began to roll up to the tip of the finger 8 ± 1 ms before ball release owing to the start of extension or the increased angular velocity of extension for the proximal interphalangeal joint. A mean force of 195 ± 27 N was applied in the proximal direction of the hand at the same time as the beginning of ball rolling, and a mean force of 109 ± 22 N was applied to the throwing direction just before ball release.  相似文献   

10.
Abstract

The purpose of this study was to examine the mechanics of hitting a baseball to the same and opposite fields. Twenty male subjects were assigned to one of two groups according to their baseball hitting abilities. Each subject performed as many trials as were necessary to successfully hit a pitched ball three times to both the same and opposite fields. Each trial was filmed from above. No significant interactions (p < 0.05) were found between subject groups and field hits with selected temporal and kinematic parameters entered as dependent variables. Significant differences (p < 0.05) were found between body landmark and segment component displacements and velocities at the instant prior to ball contact. The maximum resultant linear and angular speed of the examined body and bat landmarks were found to occur prior to ball contact. Based on the results of the study it was concluded that no interactions exist between hitting ability and hitting technique when hitting to defined field areas and that differences in the mechanics of hitting to defined areas are due in part to: (1) differences in the angular displacements of the left wrist and left elbow joints and (2) differences in the temporal characteristics of the swings.  相似文献   

11.
Abstract

In this study we compared the kinematic features of the throwing motion between young baseball players of different age groups. Forty‐four Japanese baseball players aged 6.1 to 12.3 years who regularly played baseball, including pitchers and position players, had their throwing actions analyzed three‐dimensionally using high speed videography. Of this sample, 26 players aged above 9 years of age were categorized as the senior group, while the remaining 18 were categorized as the junior group. Senior group throwers had greater height and body mass, and produced a greater ball speed than junior group throwers. The throwing arm movement of senior group throwers was similar to that of adult skilled players. However, in the junior group throwers, the shoulder horizontal adduction angle was larger during the arm acceleration phase, and the maximum angular velocities of elbow extension and shoulder internal rotation occurred later than in senior group throwers. These results indicate that players aged above 9 years can acquire a mature throwing arm movement, while players younger than that will use an immature motion. A possible reason why these differences were shown is that the official baseball is relatively heavy for junior group throwers; they would be better advised to use a lighter ball in throwing practice.  相似文献   

12.
The influence of moment of inertia on baseball/softball bat swing speed   总被引:1,自引:1,他引:0  
The speed at which a player can swing a bat is central to the games of baseball and softball, determining, to a large extent, the hit speed of the ball. Experimental and analytical studies of bat swing speed were conducted with particular emphasis on the influence of bat moment of inertia on swing speed. Two distinct sets of experiments measured the swing speed of colege baseball and fast-pitch softball players using weighted rods and modified bats. The swing targets included flexible targets, balls on a tee and machine pitched balls. Internal mass alterations provided a range of inertial properties. The average measured speeds, from 22 to 31 m s−1, are consistent with previous studies. Bat speed approximately correlates with the moment of inertia of the bat about a vertical axis of rotation through the batter's body, the speed generally decreasing as this moment of inertia increases. The analytical model assumes pure rotation of the batter/bat system about a vertical axis through the batter's body. Aerodynamic drag of the batter's arms and the bat is included in the model. The independent variable is bat moment of inertia about the rotation axis. There is reasonable agreement between the model and the measured speeds. Detailed differences between the two suggest the importance of additional degrees of freedom in determining swing speed.  相似文献   

13.
Because youth athletes are smaller and weaker than their adult counterparts, smaller equipment and fields are often used in youth sports. Previous research has shown that youth baseball pitchers use similar motions to older pitchers, but generate lower kinetics and angular velocities at the shoulder and elbow. The purpose of this study was to determine potential biomechanical benefits for youth pitchers to use lighter baseballs. Thirty-four youth (11.1 ± 0.7 years) pitchers pitched both standard [5 ounce (142 g)] and lightweight [4 ounce(113 g)] baseballs in a laboratory setting. Kinematic and kinetic parameters were measured with a six-camera high-speed motion analysis system. Three repeated measures MANOVAs were used to compare (p > 0.05) position, velocity, and kinetic parameters between the standard and lightweight baseballs. Subjective data were also collected. Pitching the lightweight ball produced no difference in arm position, but greater shoulder, elbow, and ball velocities. With the lightweight ball, pitchers produced decreased kinetics.Post-hoc analysis of the kinetic data revealed significant decreases in elbow varus torque and shoulder internal rotation torque. The data suggest that playing with lightweight baseballs may reduce the risk of overuse injury in the youth pitcher and also help develop arm speed. However, before introducing lightweight baseballs into the youth game, the effect of lighter, faster pitched balls for the batters and fielders should also be considered.  相似文献   

14.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

15.
Abstract

We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

16.
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.  相似文献   

17.
Three-dimensional simulations of the frictional collision between solid balls moving on a rough surface are analyzed in this paper. The analysis is performed in the context of pool and snooker, two popular games in the pocket billiards family. Accurate simulations of ball motion in billiard games are useful for television broadcasts, training systems and any robotic game playing systems. Studying solid ball collisions in a three-dimensional space requires careful consideration of the different phenomena involved in ball motion such as rolling, sliding and ball spin about a general axis. A set of differential equations are derived describing ball dynamics during collisions. In the absence of explicit analytical solutions to the differential equations, a numerical procedure is performed to determine post-collision ball velocities and spins after collision. In addition, the paper also presents a methodology to analyze the curved, slip trajectories of balls immediately after impact. The results presented here, when compared with some experimental shots, show that the percentile errors in post-collision velocities are reduced by the proposed method. The prediction accuracies for ball travel direction are increased twofold by the proposed impact simulation algorithm.  相似文献   

18.
In this study we compared the kinematic features of the throwing motion between young baseball players of different age groups. Forty-four Japanese baseball players aged 6.1 to 12.3 years who regularly played baseball, including pitchers and position players, had their throwing actions analyzed three-dimensionally using high speed videography. Of this sample, 26 players aged above 9 years of age were categorized as the senior group, while the remaining 18 were categorized as the junior group. Senior group throwers had greater height and body mass, and produced a greater ball speed than junior group throwers. The throwing arm movement of senior group throwers was similar to that of adult skilled players. However, in the junior group throwers, the shoulder horizontal adduction angle was larger during the arm acceleration phase, and the maximum angular velocities of elbow extension and shoulder internal rotation occurred later than in senior group throwers. These results indicate that players aged above 9 years can acquire a mature throwing arm movement, while players younger than that will use an immature motion. A possible reason why these differences were shown is that the official baseball is relatively heavy for junior group throwers; they would be better advised to use a lighter ball in throwing practice.  相似文献   

19.
Left-handed baseball pitchers are thought to have a number of theoretical advantages compared to right-handed pitchers; however, there is limited scientific research detailing differences in the pitching mechanics of right- and left-handed pitchers. Therefore, this study sought to understand whether any kinematic and kinetic differences existed between right- and left-handed baseball pitchers. A total of 52 collegiate pitchers were included in this study; 26 left-handed pitchers were compared to 26 age-, height-, weight- and ball velocity-matched right-handed pitchers. Demographic information, passive shoulder range of motion and kinematic and kinetic data were obtained for each pitcher participating in the study. Results indicated that left-handed pitchers did not have a glenohumeral internal rotation deficit as compared to right-handed pitchers. Kinematic analysis indicated that elbow flexion, horizontal glenohumeral abduction and wrist coronal plane motion were significantly different between the two study cohorts. It was also noted that left-handed pitchers had increased elbow varus moments. The findings of this study suggest that pitching coaches should be aware that there are biomechanical differences between left- and right-handed pitchers.  相似文献   

20.
ABSTRACT

Conceptually, an efficient baseball pitch demonstrates a proximal-to-distal transfer of segmental angular velocity. Such a timing pattern (or kinematic sequence) reduces stress on musculoskeletal structures of the throwing arm and maximises ball velocity. We evaluated the variability of kinematic sequences in 208 baseball pitches. 3D biomechanical pitch analyses were performed on 8–10 fastball pitches from 22 baseball pitchers (5 high school, 11 collegiate and 6 professional). The kinematic sequence patterns – time of peak angular velocity of five body segments: pelvis, trunk, arm, forearm and hand – were measured. None of the pitches analysed demonstrated an entirely proximal-to-distal kinematic sequence. Fourteen different kinematic sequence patterns were demonstrated, with the most prevalent sequence being pelvis → trunk → arm → hand → forearm. Fewer than 10% of the pitchers performed only one kinematic sequence pattern across the sampled pitches. The variability of the kinematic sequence was similar in high-school pitchers and professionals. Previous studies report that deviation from the proximal-to-distal kinematic sequence is associated with increased injury risk. As a method of evaluating the efficient transfer of energy to the hand, the kinematic sequence may provide insight to injury risk in the future. The ideal kinematic sequence and ideal variability of the sequence when throwing have yet to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号