首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.  相似文献   

2.
Abstract

The aim of this study was to determine the relative and absolute reliability of second lactate turnpoint using fixed and individual blood lactate method in competitive cyclists. Twenty-eight male, well-trained cyclists (30.2 ± 10.1 years, 72.0 ± 7.4 kg, 177.3 ± 4.7 cm) were recruited to participate in this study. Cyclists completed two incremental cycling tests to exhaustion over a period of 7 days to determine their peak power output, maximal oxygen uptake, maximal heart rate, maximal blood lactate concentration and two lactate turnpoint criteria. The fixed blood concentration criterion (3.5 mM) and an individual criterion were assessed by a lactate-power curve, considering power output, heart rate and oxygen uptake. The main finding of this study was that both lactate turnpoint criteria showed identical low within-subject variation for power output (2.8% coefficient of variation). High values for test–retest correlations ranging from r = 0.70 to r = 0.94 were found for all variables in both threshold criteria. In conclusion, the individual and fixed method to determine the second lactate turnpoint showed similar high absolute and relative reliability in competitive cyclists.  相似文献   

3.
目的:通过两种测试方法的比较,建立优秀竞走运动员专项有氧能力的场地评价方法。研究对象为国家竞走队运动员8人;方法:采用实验室递增负荷测试和conconi场地测试。结果:实验室递增负荷测试,优秀竞走运动员的最大血乳酸值为11.50±1.51mmol/L,10min乳酸清除率为0.37±0.15,乳酸阈走速为12.44±0.59km/h,心率阈走速为13.30±0.91km/h。通过conconi测试获得的优秀竞走运动员的心率阈值为168.8±3.2次/min,个体无氧阈走速为13.40±0.27km/h;两种测试方法比较,心率阈值不存在显著性差异,个体无氧阈走速也不存在显著性的差异,两组值存在高度正相关。结论:从获取竞走运动员心率阈和个体无氧阈走速方面看,场地conconi测试可以取代实验室递增负荷测试,且更接近运动实际。  相似文献   

4.
Comparison of maximal anaerobic running tests on a treadmill and track   总被引:1,自引:0,他引:1  
To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol x l-1 (v10 mM) and 5 mmol x l(-1) (v5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 +/- 0.79 m x s(-1)) than on the treadmill (7.13 +/- 0.75 m x s(-1)), and sprint runners had significantly higher vmax, v10 mM, and peak blood lactate concentration than distance runners (P < 0.05). The Pearson product--moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v10 mM), 0.70 (v5 mM), and 0.78 (peak blood lactate concentration) (P < 0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with vmax in the treadmill (r = 0.90, P < 0.001) and track protocols (r = 0.92, P < 0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and vmax in the treadmill (r = 0.70, P < 0.01) and track protocols (r = 0.63, P < 0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

5.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

6.
Abstract

The current study examines maximal heart rate and maximal treadmill time differences among three ethnic groups. In 1985, 1,047 city employees (572 male, 475 female) participated in a comprehensive health promotion program. Data were collected from a self-administered health and lifestyle questionnaire, maximal treadmill exercise stress test, and other clinical measures. The participants were divided into white male (n = 368), black male (n = 159), Mexican-American male (n = 45), white female (n = 256), black female (n = 189), and Mexican-American female (n = 30) subgroups based on self-reported ethnic identity. Univariate analyses revealed no significant differences in age-adjusted maximal heart rate or maximal treadmill time for males. Mean age-adjusted treadmill time for black females (478.0 ± 228.2 s) was significantly lower than for white (652.5 ± 227.7 s) and Mexican-American (594.5 ± 226.7 s) females (p <. 05). Mean age-adjusted maximal heart rate for black females (174.4 ± 12.4 beats/min) was significantly lower than for white (179.3 ± 13.4 beats/min) and Mexican-American (182.0 ± 13.5 beats/min) females (p < .05). Following adjustment for cardiovascular fitness level, that is, treadmill time, as well as age, these differences were no longer apparent. We concluded that the comparatively low maximal heart rate of black females may be partially explained by a significantly lower cardiovascular fitness level relative to white and Mexican-American females.  相似文献   

7.
研究目的 :1)应用场地康科尼测试方法寻找足球运动员个体无氧阈最大速度的可行性 ;2 )分析康氏测试心率拐点与乳酸阈拐点对应的个体无氧阈最大速度之间的关系 ;3)测定最大乳酸稳定状态 ( ML SS) ,验证康氏测试个体无氧阈最大速度的可靠性。结果证明 ,在康氏测试中 85 %受试者都出现心率拐点 ,完成距离最短者心率拐点偏左、中长者居中、最长者偏右 ,相对应的乳酸阈速度正好低于心率拐点速度一个等级 ,但该两种速度之间并未出现不规则变化差异 ,且高度相关。选取康氏测试心率拐点速度进行 2 4 min匀速运动受试者平均乳酸值显示最大乳酸稳定状态 ( ML SS) ,表明可用于个体无氧阈最大速度 ,但大于 180次 / m in的心率拐点速度即已超过本人的个体无氧阈最大速度  相似文献   

8.
This study aimed to quantify the intra-individual reliability of a number of physiological variables in a group of national and international young distance runners. Sixteen (8 male, 8 female) participants (16.7?±?1.4 years) performed a submaximal incremental running assessment followed by a maximal running test, on two occasions separated by no more than seven days. Maximal oxygen uptake (V?O2max), speed at V?O2max (km?h?1), running economy and speed and heart rate (HR) at fixed blood lactate concentrations were determined. V?O2max and running economy were scaled for differences in body mass using a power exponent derived from a larger cohort of young runners (n?=?42). Running economy was expressed as oxygen cost and energy cost at the speed associated with lactate turnpoint (LTP) and the two speeds prior to LTP. Results of analysis of variance revealed an absence of systematic bias between trials. Reliability indices showed a high level of reproducibility across all parameters (typical error [TE] ≤2%; intra-class correlation coefficient >0.8; effect size <0.6). Expressing running economy as energy cost appears to provide superior reliability than using oxygen cost (TE ~1.5% vs. ~2%). Blood lactate and HR were liable to daily fluctuations of 0.14–0.22?mmol?L?1 and 4–5?beats?min?1 respectively. The minimum detectable change values (95% confidence) for each parameter are also reported. Exercise physiologists can be confident that measurement of important physiological determinants of distance running performance are highly reproducible in elite junior runners.  相似文献   

9.
两种无氧阈测试法在赛艇运动中应用的比较研究   总被引:4,自引:0,他引:4  
采用两种不同的无氧阈测试方法(乳酸法和Conconi法)对赛艇运动员进行测试,并比较其结果的相关性。结果表明:其无氧阈血乳酸值无显著性差异,无氧阈心率存在显著性差异,心率之间的差异有可能是由最大乳酸稳定状态下的个体乳酸阈最大速度引起的,在赛艇训练中以Conconi测试的心率拐点作为无氧阈训练的评定指标更有利于运动员有氧耐力水平的提高。  相似文献   

10.
The aims of this study were to examine and compare selected physiological and metabolic responses of wheelchair athletes in two paraplegic racing classes [T3: n?=?8 (lesion levels T1–T7; paraplegics); T4: n?=?9 (lesion levels below T7; paraplegics)] to prolonged exercise. In addition, we describe the responses of three tetraplegic athletes [T2: n?=?3 (lesion levels C6/C7: tetraplegics)]. Twenty athletes completed 90?min of exercise at 75% [Vdot]O2peak on a motorized treadmill adapted for wheelchairs. The mean (±s) heart rates of the T3 and T4 racing classes were 165±2 and 172±6 beats?·?min?1, respectively. For the T4 racing class, heart rate gradually increased during the test (P?<0.05), whereas for the T3 racing class, heart rate reached a plateau after an initial increase. The mean heart rate of the tetraplegics was 114±3 beats?·?min?1. The T3 and T4 classes exhibited similar respiratory exchange ratios, plasma lactate and glucose concentrations throughout the test. For both the T3 and T4 racing class, free fatty acid, glycerol, ammonia, urea and potassium concentrations had increased from resting values by the end of the test (P?<0.05). In conclusion, the results of this study suggest that endurance-trained wheelchair athletes are able to maintain velocities equivalent to the same relative exercise intensity (75% [Vdot]O2peak) for prolonged periods irrespective of lesion level.  相似文献   

11.
Abstract

The aim of this study was to examine how running experience affects leg stiffness (Kleg) and spring-mass characteristics during running stages associated with the onset of blood lactate accumulation (OBLA). Seven trained (66.9?±?4.8?kg; 182?±?4.0?cm; 23.1?±?3.1 years) and 13 untrained (78.5?±?7.6?kg; 182?±?3.0?cm; 20.3?±?1.5 years) runners completed an incremental treadmill run. Running velocity was increased by 1 km.h?1 every four minutes and blood lactate samples were taken at every stage, in addition to a 10?s video recording using ‘Runmatic’. Once 4?mmol?L?1 (OBLA; the second lactate turn point) had been reached one more stage was completed. Spring-mass characteristics across groups and at pre-OBLA, OBLA and post-OBLA were compared. The velocity at OBLA was higher for the trained runners compared to the untrained runners (18?±?0.7 vs 11?±?1.3 km.h?1, p?<?0.001). Kleg was similar between untrained and trained runners across each stage (15.8?±?0.3 vs 14.3?±?0.3 kN.m) and did not change between stages, yet spring-mass characteristics differed between groups. Vertical stiffness increased in the trained runners from pre-OBLA to post-OBLA (45.5?±?3.35–51.9?±?3.61 kN?1), but not in untrained runners (35.0?±?5.2–39.6?±?5.7 kN?1). Kleg was strongly related to Fpeak for trained runners only (r?=?0.79; untrained runners, r?=?0.34). Kleg was unaffected by physiological training status and was maintained across all OBLA stages. Trained runners appear to have optimised their spring-mass system in a homogenous manner, whilst less consistent spring-mass characteristics were observed in untrained runners.  相似文献   

12.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake (VO2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0 mmol x l(-1) were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5 km x h(-1), where the change in blood lactate concentration between 10 and 20 min was < 0.5 mmol x l(-1). Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3 km x h(-1), P < 0.01), once the data were expressed relative to percent peak VO2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P > 0.05). The running speed and percent peak VO2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5 mmol x l(-1) (P > 0.05), but were both lower than those at the 4.0 mmol x l(-1) concentration (P < 0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak VO2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5 mmol x l(-1) measured during an incremental treadmill test in boys and girls.  相似文献   

13.
The aim of this study was to determine exercise intensity and metabolic response during singles tennis play. Techniques for assessment of exercise intensity were studied on-court and in the laboratory. The on-court study required eight State-level tennis players to complete a competitive singles tennis match. During the laboratory study, a separate group of seven male subjects performed an intermittent and a continuous treadmill run. During tennis play, heart rate (HR) and relative exercise intensity (72 ± 1.9% V O 2m ax ; estimated from measurement of heart rate) remained constant (83.4 ± 0.9% HR m ax ; mean s x ) after the second change of end. The peak value for estimated play intensity (1.25 ± 0.11 steps . s -1 ; from video analysis) occurred after the fourth change of end (P < 0.005). Plasma lactate concentration, measured at rest and at the change of ends, increased 175% from 2.13 ± 0.32 mmol . l -1 at rest to a peak 5.86 ± 1.33 mmol . l -1 after the sixth change of end (P < 0.001). A linear regression model, which included significant terms for %HR m ax (P < 0.001) and subject (P < 0.001), as well as a %HR max subject interaction (P < 0.05), accounted for 82% of the variation in plasma lactate concentration. During intermittent laboratory treadmill running, % V O 2peak estimated from heart rate was 17% higher than the value derived from the measured V O 2 (79.7 ± 2.2% and 69.0 ± 2.5% V O 2peak respectively; P < 0.001). The % V O 2peak was estimated with reasonable accuracy during continuous treadmill running (5% error). We conclude that changes in exercise intensity based on measurements of heart rate and a time-motion analysis of court movement patterns explain the variation in lactate concentration observed during singles tennis, and that measuring heart rate during play, in association with preliminary fitness tests to estimate V O 2 , will overestimate the aerobic response. (P < 0.001), estimated play intensity  相似文献   

14.
ABSTRACT

Studies on running biomechanics and energetics are usually conducted on a treadmill. To ensure that locomotion on a treadmill is comparable to locomotion overground, participants need to be expert in the use of the device. This study aimed to identify the number and duration of sessions needed to obtain stable measurements for spatiotemporal and metabolic parameters in unexperienced treadmill runners. Fourteen male recreational runners performed three 15-min treadmill running trials in different days at a submaximal speed. Spatiotemporal and metabolic parameters were registered at minutes: 5, 10, 15 and their within-trial and between-trial changes were analysed using a two-way repeated measures ANOVA and Bonferroni post-hoc test. Within-trial differences were found in step frequency (decreased over time), Step Length and Contact Time (increased), reaching stability at different time points. Ventilator parameters increased, reaching stability after 5–10 min, while heart rate increased progressively over time. The only between-trial differences were an increase in step length and a decrease in step frequency at min 1, between trials 1 and 3. In conclusion, at least three running trials of 15 min are required to familiarize with the device. The last 5 min of the third trial can be regarded as stable measurements.  相似文献   

15.
Sixteen female games players completed 15 min of intermittent exercise on a treadmill. The speed and incline of the treadmill were varied to elicit a similar heart rate response to that found during women's hockey match‐play. The mean heart rate response was 169 ± 8 beats min‐1 and the mean work:rest ratio was 1:1.7. Oxygen uptake was estimated by applying the oxygen cost determined from an individual's heart rate‐oxygen uptake regression equation to the average heart rate each 5 s during the intermittent exercise. A second esimation of oxygen uptake was made from a time‐motion analysis by assigning a specific oxygen cost to each discrete movement during the intermittent exercise protocol. The true oxygen cost was calculated from the analysis of the expired gas. The heart rate analysis overestimated the true cost by a mean of 4.3 ± 5.3% (0.09 ± 0.11 1 min‐1), and the time‐motion analysis underestimated the true value by a mean of 15.7 ± 6.3% (0.34 ± 0.15 1 min‐1). There was a significant difference (P < 0.01) between the true value and both the estimates. It was concluded that heart rate analysis gives a much better indication of oxygen uptake during intermittent activity than time‐motion analysis.  相似文献   

16.
Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75–81% VO2max). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg?1 · min?1), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min?1), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min?1), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min?1) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min?1) (all analysis of variance treadmill comparisons < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.  相似文献   

17.
Four competition walkers performed competition walking, ordinary walking and running on a treadmill on two different occasions. During the two walking modes, the subjects performed maximal tests. During running, the session was terminated at a heart rate of 150 beats min-1 or an exertion rating--for either chest or leg--of 5 or higher. The tests commenced at 2.5 km h-1 and the velocity was increased by 2.5 km h-1 every 4 min. Measures of chest exertion and breathlessness, leg exertion, heart rate and blood lactate were taken every 4 min just prior to the velocity changes. The measured psychological and physiological variables were described by monotonously accelerating power functions with exponents around 2 for the perceptual variables at both walking modes. The heart rate growth for competition walking accelerated according to a function with an exponent of 1.7, which is lower than that for ordinary walking (2.0), but higher than that for running which is linear. No significant difference was found between maximal oxygen uptake when competition walking and running were compared. A second test was carried out so as to confirm the cross-over point for the heart rate curves in the two walking modes. The cross-over point for the two walking curves were determined to be at 8.6 km h-1.  相似文献   

18.
The aim of the present study was to examine the relationship between the performance heart rate during an ultra-endurance triathlon and the heart rate corresponding to several demarcation points measured during laboratory-based progressive cycle ergometry and treadmill running. Less than one month before an ultra-endurance triathlon, 21 well-trained ultra-endurance triathletes (mean +/- s: age 35 +/- 6 years, height 1.77 +/- 0.05 m, mass 74.0 +/- 6.9 kg, = 4.75 +/- 0.42 l x min(-1)) performed progressive exercise tests of cycle ergometry and treadmill running for the determination of peak oxygen uptake (VO2peak), heart rate corresponding to the first and second ventilatory thresholds, as well as the heart rate deflection point. Portable telemetry units recorded heart rate at 60 s increments throughout the ultra-endurance triathlon. Heart rate during the cycle and run phases of the ultra-endurance triathlon (148 +/- 9 and 143 +/- 13 beats x min(-1) respectively) were significantly (P < 0.05) less than the second ventilatory thresholds (160 +/- 13 and 165 +/- 14 beats x min(-1) respectively) and heart rate deflection points (170 +/- 13 and 179 +/- 9 beats x min(-1) respectively). However, mean heart rate during the cycle and run phases of the ultra-endurance triathlon were significantly related to (r = 0.76 and 0.66; P < 0.01), and not significantly different from, the first ventilatory thresholds (146 +/- 12 and 148 +/- 15 beats x min(-1) respectively). Furthermore, the difference between heart rate during the cycle phase of the ultra-endurance triathlon and heart rate at the first ventilatory threshold was related to marathon run time (r = 0.61; P < 0.01) and overall ultra-endurance triathlon time (r = 0.45; P < 0.05). The results suggest that triathletes perform the cycle and run phases of the ultra-endurance triathlon at an exercise intensity near their first ventilatory threshold.  相似文献   

19.
The aims of this study were to examine and compare selected physiological and metabolic responses of wheelchair athletes in two paraplegic racing classes [T3: n = 8 (lesion levels T1-T7; paraplegics); T4: n = 9 (lesion levels below T7; paraplegics)] to prolonged exercise. In addition, we describe the responses of three tetraplegic athletes [T2: n = 3 (lesion levels C6/C7: tetraplegics)]. Twenty athletes completed 90 min of exercise at 75% VO2peak on a motorized treadmill adapted for wheelchairs. The mean (+/- s) heart rates of the T3 and T4 racing classes were 165 +/- 2 and 172 +/- 6 beats.min-1, respectively. For the T4 racing class, heart rate gradually increased during the test (P < 0.05), whereas for the T3 racing class, heart rate reached a plateau after an initial increase. The mean heart rate of the tetraplegics was 114 +/- 3 beats.min-1. The T3 and T4 classes exhibited similar respiratory exchange ratios, plasma lactate and glucose concentrations throughout the test. For both the T3 and T4 racing class, free fatty acid, glycerol, ammonia, urea and potassium concentrations had increased from resting values by the end of the test (P < 0.05). In conclusion, the results of this study suggest that endurance-trained wheelchair athletes are able to maintain velocities equivalent to the same relative exercise intensity (75% VO2peak) for prolonged periods irrespective of lesion level.  相似文献   

20.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake ([Vdot]O2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0?mmol?·?l?1 were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5?km?·?h?1, where the change in blood lactate concentration between 10 and 20?min was?<0.5?mmol?·?l?1. Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3?km?·?h?1, P?<0.01), once the data were expressed relative to percent peak [Vdot]O2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P?>0.05). The running speed and percent peak [Vdot]O2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5?mmol?·?l?1 (P?>0.05), but were both lower than those at the 4.0?mmol?·?l?1 concentration (P?<0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak [Vdot]O2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5?mmol?·?l?1 measured during an incremental treadmill test in boys and girls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号