首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
This study investigated the effect of a single session of resistance exercise on postprandial lipaemia. Eleven healthy normolipidaemic men with a mean age of 23 (standard error = 1.4) years performed two trials at least 1 week apart in a counterbalanced randomized design. In each trial, participants consumed a test meal (1.2?g fat, 1.1?g carbohydrate, 0.2?g protein and 68 kJ?·?kg?1 body mass) between 08.00 and 09.00?h following a 12?h fast. The afternoon before one trial, the participants performed an 88?min bout of resistance exercise. Before the other trial, the participants were inactive (control trial). Resistance exercise was performed using free weights and included four sets of 10 repetitions of each of 11 exercises. Sets were performed at 80% of 10-repetition maximum with a 2?min work and rest interval. Venous blood samples were obtained in the fasted state and at intervals for 6?h postprandially. Fasting plasma triacylglycerol (TAG) concentration did not differ significantly between control (1.03?±?0.13?mmol?·?l?1) and exercise (0.94?±?0.09?mmol?·?l?1) trials (mean?± standard error). Similarly, the 6?h total area under the plasma TAG concentration versus time curve did not differ significantly between the control (9.84?±?1.40?mmol?·?l?1?·?6?h?1) and exercise (9.38?±?1.12?mmol?·?l?1?·?6?h?1) trials. These findings suggest that a single session of resistance exercise does not reduce postprandial lipaemia.  相似文献   

2.
This study investigated whether repeated, very short duration sprints influenced endothelial function (indicated by flow-mediated dilation) and triacylglycerol concentrations following the ingestion of high-fat meals in adolescent boys. Nine adolescent boys completed two, 2-day main trials (control and exercise), in a counter-balanced, cross-over design. Participants were inactive on day 1 of the control trial but completed 40 × 6 s maximal cycle sprints on day 1 of the exercise trial. On day 2, capillary blood samples were collected and flow-mediated dilation measured prior to, and following, ingestion of a high-fat breakfast and lunch. Fasting flow-mediated dilation and plasma triacylglycerol concentration were similar in the control and exercise trial (> 0.05). In the control trial, flow-mediated dilation was reduced by 20% and 27% following the high-fat breakfast and lunch; following exercise these reductions were negated (main effect trial, < 0.05; interaction effect trial × time, < 0.05). The total area under the plasma triacylglycerol concentration versus time curve was 13% lower on day 2 in the exercise trial compared to the control trial (8.65 (0.97) vs. 9.92 (1.16) mmol · l?1 · 6.5 h, < 0.05). These results demonstrate that repeated 6 s maximal cycle sprints can have beneficial effects on postprandial endothelial function and triacylglycerol concentrations in adolescent boys.  相似文献   

3.
Nine male student games players consumed either flavoured water (0.1 g carbohydrate, Na+ 6 mmol · l?1), a solution containing 6.5% carbohydrate-electrolytes (6.5 g carbohydrate, Na+ 21 mmol · l?1) or a taste placebo (Na+ 2 mmol · l?1) during an intermittent shuttle test performed on three separate occasions at an ambient temperature of 30°C (dry bulb). The test involved five 15-min sets of repeated cycles of walking and variable speed running, each separated by a 4-min rest (part A of the test), followed by 60 s run/60 s rest until exhaustion (part B of the test). The participants drank 6.5 ml · kg?1 of fluid as a bolus just before exercise and thereafter 4.5 ml · kg?1 during every exercise set and rest period (19 min). There was a trial order effect. The total distance completed by the participants was greater in trial 3 (8441 ± 873 m) than in trial 1 (6839 ± 512, P < 0.05). This represented a 19% improvement in exercise capacity. However, the trials were performed in a random counterbalanced order and the participants completed 8634 ± 653 m, 7786 ± 741 m and 7099 ± 647 m in the flavoured water (FW), placebo (P) and carbohydrate-electrolyte (CE) trials, respectively (P = 0.08). Sprint performance was not different between the trials but was impaired over time (FW vs P vs CE: set 1, 2.41 ± 0.02 vs 2.39 ± 0.03 vs 2.39 ± 0.03 s; end set, 2.46 ± 0.03 vs 2.47 ± 0.03 vs 2.47 ± 0.02 s; main

effect time, P < 0.01). The rate of rise in rectal temperature was greater in the carbohydrate-electrolyte trial (rise in rectal temperature/duration of trial, °C · h?1; FW vs CE, P < 0.05; P vs CE, N.S.). Blood glucose concentrations were higher in the carbohydrate-electrolyte than in the other two trials (FW vs P vs CE: rest, 4.4 ± 0.1 vs 4.3 ± 0.1 vs 4.2 ± 0.1 mmol · l?1; end of exercise, 5.4 ± 0.3 vs 6.4 ± 0.6 vs 7.2 ± 0.5 mmol · l?1; main effect trial, P < 0.05; main effect time, P < 0.01). Plasma free fatty acid concentrations at the end of exercise were lower in the carbohydrate-electrolyte trial than in the other two trials (FW vs P vs CE: 0.57 ± 0.08 vs 0.53 ± 0.11 vs 0.29 ± 0.04 mmol · l?1; interaction, P < 0.01). The correlation between the rate of rise in rectal temperature (°C · h?1) and the distance completed was ?0.91, ?0.92 and ?0.96 in the flavoured water, placebo and carbohydrate-electrolyte conditions, respectively (P < 0.01). Heart rate, blood pressure, plasma ammonia, blood lactate, plasma volume and rate of perceived exertion were not different between the three fluid trials. Although drinking the carbohydrate-electrolyte solution induced greater metabolic changes than the flavoured water and placebo solutions, it is unlikely that in these unacclimated males carbohydrate availability was a limiting factor in the performance of intermittent running in hot environmental conditions.  相似文献   

4.
Abstract

In this study, we investigated the effect of ingesting carbohydrate alone or carbohydrate with protein on functional and metabolic markers of recovery from a rugby union-specific shuttle running protocol. On three occasions, at least one week apart in a counterbalanced order, nine experienced male rugby union forwards ingested placebo, carbohydrate (1.2 g · kg body mass?1 · h?1) or carbohydrate with protein (0.4 g · kg body mass?1 · h?1) before, during, and after a rugby union-specific protocol. Markers of muscle damage (creatine kinase: before, 258 ± 171 U · L?1 vs. 24 h after, 574 ± 285 U · L?1; myoglobin: pre, 50 ± 18 vs. immediately after, 210 ± 84 nmol · L?1; P < 0.05) and muscle soreness (1, 2, and 3 [maximum soreness = 8] for before, immediately after, and 24 h after exercise, respectively) increased. Leg strength and repeated 6-s cycle sprint mean power were slightly reduced after exercise (93% and 95% of pre-exercise values, respectively; P < 0.05), but were almost fully recovered after 24 h (97% and 99% of pre-exercise values, respectively). There were no differences between trials for any measure. These results indicate that in experienced rugby players, the small degree of muscle damage and reduction in function induced by the exercise protocol were not attenuated by the ingestion of carbohydrate and protein.  相似文献   

5.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake ([Vdot]O2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0?mmol?·?l?1 were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5?km?·?h?1, where the change in blood lactate concentration between 10 and 20?min was?<0.5?mmol?·?l?1. Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3?km?·?h?1, P?<0.01), once the data were expressed relative to percent peak [Vdot]O2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P?>0.05). The running speed and percent peak [Vdot]O2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5?mmol?·?l?1 (P?>0.05), but were both lower than those at the 4.0?mmol?·?l?1 concentration (P?<0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak [Vdot]O2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5?mmol?·?l?1 measured during an incremental treadmill test in boys and girls.  相似文献   

6.
Abstract

The aim of this study was to determine sprint profiles of professional female soccer players and evaluate how various speed thresholds impact those outcomes. Seventy-one professional players competing in full matches were assessed repeatedly during 12 regular season matches using a Global Positioning System (GPS). Locomotion ≥18 km · h?1 was defined as sprinting and each event was classified into: Zone 1: 18.0–20.9 km· h?1; Zone 2: 21.0–22.9 km · h?1; Zone 3: 23.0–24.9 km · h?1 and Zone 4: >25 km · h?1. Outcomes included: duration (s), distance (m), maximum speed (km · h?1), duration since previous sprint (min) and proportion of total sprint distance. In total 5,019 events were analysed from 139 player-matches. Mean sprint duration, distance, maximum speed and time between sprints were 2.3 ± 1.5 s, 15.1 ± 9.4 m, 21.8 ± 2.3 km· h?1, and 2.5 ± 2.5 min, respectively. Mean sprint distances were 657 ± 157, 447 ± 185, and 545 ± 217 m for forwards, midfielders and defenders, respectively (P ≤ 0.046). Midfielders had shorter sprint duration (P = 0.023), distance (P ≤ 0.003) and maximum speed (P < 0.001), whereas forwards performed more sprints per match (43 ± 10) than midfielders (31 ± 11) and defenders (36 ± 12) (P ≤ 0.016). Forty-five percent, 29%, 15%, and 11% of sprints occurred in sprint Zones 1, 2, 3 and 4, respectively. This group of professional female soccer players covered 5.3 ± 2.0% of total distance ≥18 km · h?1 with positional differences and percent decrements distinct from other previously identified elite players. These data should guide the development of high intensity and sprint thresholds for elite-standard female soccer players.  相似文献   

7.
Abstract

Ingesting carbohydrate plus protein following prolonged exercise may restore exercise capacity more effectively than ingestion of carbohydrate alone. The objective of the present study was to determine whether this potential benefit is a consequence of the protein fraction per se or simply due to the additional energy it provides. Six active males participated in three trials, each involving a 90-min treadmill run at 70% maximal oxygen uptake (run 1) followed by a 4-h recovery. At 30-min intervals during recovery, participants ingested solutions containing: (1) 0.8 g carbohydrate · kg body mass (BM)?1 · h?1 plus 0.3 g · kg?1 · h?1 of whey protein isolate (CHO-PRO); (2) 0.8 g carbohydrate · kg BM?1 · h?1 (CHO); or (3) 1.1 g carbohydrate · kg BM?1 · h?1 (CHO-CHO). The latter two solutions matched the CHO-PRO solution for carbohydrate and for energy, respectively. Following recovery, participants ran to exhaustion at 70% maximal oxygen uptake (run 2). Exercise capacity during run 2 was greater following ingestion of CHO-PRO and CHO-CHO than following ingestion of CHO (P ≤ 0.05) with no significant difference between the CHO-PRO and CHO-CHO treatments. In conclusion, increasing the energy content of these recovery solutions extended run time to exhaustion, irrespective of whether the additional energy originated from sucrose or whey protein isolate.  相似文献   

8.
The aim of this study was to determine the effects of caffeine ingestion on a ‘preloaded’ protocol that involved cycling for 2?min at a constant rate of 100% maximal power output immediately followed by a 1-min ‘all-out’ effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5?mg?·?kg?1) or placebo in a randomized, double-blind procedure. All tests were conducted on the participants' own bicycles using a Kingcycle? test rig. Ratings of perceived exertion (RPE; 6–20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120?s during the constant rate phase of the preloaded test (P?<0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794±164 vs 750±163?W; P?=?0.05). Blood lactate concentration 4, 5 and 6?min after exercise was also significantly higher by approximately 1?mmol?·?l?1 in the caffeine trial (P?<0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.  相似文献   

9.
This study investigated the effect of a single session of resistance exercise on postprandial lipaemia. Eleven healthy normolipidaemic men with a mean age of 23 (standard error = 1.4) years performed two trials at least 1 week apart in a counterbalanced randomized design. In each trial, participants consumed a test meal (1.2 g fat, 1.1 g carbohydrate, 0.2 g protein and 68 kJ x kg(-1) body mass) between 08.00 and 09.00 h following a 12 h fast. The afternoon before one trial, the participants performed an 88 min bout of resistance exercise. Before the other trial, the participants were inactive (control trial). Resistance exercise was performed using free weights and included four sets of 10 repetitions of each of 11 exercises. Sets were performed at 80% of 10-repetition maximum with a 2 min work and rest interval. Venous blood samples were obtained in the fasted state and at intervals for 6 h postprandially. Fasting plasma triacylglycerol (TAG) concentration did not differ significantly between control (1.03 +/- 0.13 mmol x l(-1)) and exercise (0.94 +/- 0.09 mmol x l(-1)) trials (mean +/- standard error). Similarly, the 6 h total area under the plasma TAG concentration versus time curve did not differ significantly between the control (9.84 +/- 1.40 mmol l(-1) x 6 h(-1)) and exercise (9.38 +/- 1.12 mmol x l(-1) x 6 h(-1)) trials. These findings suggest that a single session of resistance exercise does not reduce postprandial lipaemia.  相似文献   

10.
This study examined the effects of different work?–?rest durations during 40?min intermittent treadmill exercise and subsequent running performance. Eight males (mean?±?s: age 24.3?±?2.0 years, body mass 79.4?±?7.0?kg, height 1.77?±?0.05?m) undertook intermittent exercise involving repeated sprints at 120% of the speed at which maximal oxygen uptake (v-[Vdot]O2max) was attained with passive recovery between each one. The work?–?rest ratio was constant at 1:1.5 with trials involving short (6:9?s), medium (12:18?s) or long (24:36?s) work?–?rest durations. Each trial was followed by a performance run to volitional exhaustion at 150% v-[Vdot]O2max. After 40?min, mean exercise intensity was greater during the long (68.4?±?9.3%) than the short work?–?rest trial (54.9?±?8.1% [Vdot]O2max; P?<?0.05). Blood lactate concentration at 10?min was higher in the long and medium than in the short work?–?rest trial (6.1?±?0.8, 5.2?±?0.9, 4.5?±?1.3?mmol?·?l?1, respectively; P?<?0.05). The respiratory exchange ratio was consistently higher during the long than during the medium and short work?–?rest trials (P <?0.05). Plasma glucose concentration was higher in the long and medium than in the short work?–?rest trial after 40?min of exercise (5.6?±?0.1, 6.6?±?0.2 and 5.3?±?0.5?mmol?·?l?1, respectively; P?<?0.05). No differences were observed between trials for performance time (72.7?±?14.9, 63.2?±?13.2, 57.6?±?13.5?s for the short, medium and long work?–?rest trial, respectively; P = 0.17), although a relationship between performance time and 40?min plasma glucose was observed (P?<?0.05). The results show that 40?min of intermittent exercise involving long and medium work?–?rest durations elicits greater physiological strain and carbohydrate utilization than the same amount of intermittent exercise undertaken with a short work?–?rest duration.  相似文献   

11.
Abstract

The aim of this study was to investigate the effect of ingesting a carbohydrate-electrolyte solution, during the 90-min Loughborough Intermittent Shuttle Test, on soccer skill performance. Seventeen male soccer players ingested either a 6.4% carbohydrate-electrolyte solution or placebo solution equivalent to 8 ml · kg?1 body mass before exercise and 3 ml · kg?1 body mass after every 15 min of exercise, in a double-blind randomized cross-over design, with the trials separated by 7 days. The evening before the main trial, the participants performed glycogen-reducing exercise on a cycle ergometer (80 min at 70%[Vdot]O2max) and were then fed a low-carbohydrate meal. After a 12-h overnight fast, they performed The Loughborough Soccer Passing Test before and after every 15 min of exercise. Analysis of the combined skill test data showed a significant time effect (P = 0.001) with differences between 0–45 and 75–90 min (P < 0.05). There was a 3% reduction in skill performance from before to after exercise in the carbohydrate-electrolyte trial, whereas in the placebo trial the decrease was 14% (P = 0.07). In conclusion, skill performance during the simulated soccer activity appeared to deteriorate in the last 15–30 min of exercise. However, providing 52 g · h?1 carbohydrate during exercise showed a tendency to better maintain soccer skill performance than a taste-matched placebo.  相似文献   

12.
This study compares test-retest reliability and peak exercise responses from ramp-incremented (RAMP) and maximal perceptually-regulated (PRETmax) exercise tests during arm crank exercise in individuals reliant on manual wheelchair propulsion (MWP). Ten untrained participants completed four trials over 2-weeks (two RAMP (0–40 W + 5–10 W · min?1) trials and two PRETmax. PRETmax consisted of five, 2-min stages performed at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20). Participants freely changed the power output to match the required RPE. Gas exchange variables, heart rate, power output, RPE and affect were determined throughout trials. The V?O2peak from RAMP (14.8 ± 5.5 ml · kg?1 · min?1) and PRETmax (13.9 ± 5.2 ml · kg?1 · min?1) trials were not different (P = 0.08). Measurement error was 1.7 and 2.2 ml · kg?1 · min?1 and coefficient of variation 5.9% and 8.1% for measuring V?O2peak from RAMP and PRETmax, respectively. Affect was more positive at RPE 13 (P = 0.02), 15 (P = 0.01) and 17 (P = 0.01) during PRETmax. Findings suggest that PRETmax can be used to measure V?O2peak in participants reliant on MWP and leads to a more positive affective response compared to RAMP.  相似文献   

13.
Acute exercise reduces postprandial triacylglycerol concentrations ([TAG]) in boys and girls; however, it is not known whether between-sex differences exist in response to exercise. Fifteen boys (mean(SD): 11.8(0.4) years) and sixteen girls (12.1(0.7) years) completed two, 2-day conditions. On day 1, participants rested (CON) or completed 10 × 1 min high-intensity interval runs at 100% maximal aerobic speed with 1 min recovery (HIIR). On day 2, participants consumed a standardised breakfast and lunch over a 6.5-h period during which seven capillary blood samples were collected. Based on ratios of the geometric means (95% CI for ratios), fasting [TAG] was 32% lower in boys than girls (?44 to ?18%, ES = 1.31, < 0.001), and 12% lower after HIIR than CON (?18 to ?5%, ES = 0.42, = 0.003); the magnitude of reduction was not significantly different between the sexes (8% (ES = 0.36) vs. 15% (ES = 0.47), respectively; = 0.29). The total area under the [TAG] versus time curve was 27% lower in boys than girls (?40 to ?10%, ES = 1.02, = 0.005), and 10% lower after HIIR than CON (?16 to ?5%, ES = 0.36, = 0.001); the magnitude of reduction was similar between the sexes (11% (ES = 0.43) vs. 10% (ES = 0.31), respectively; = 0.87). The small-moderate reduction in postprandial [TAG] after HIIR was similar between the sexes.  相似文献   

14.
Abstract

The aim of this study was to examine the effect of menstrual cycle phase on 2000-m rowing ergometry performance. Since high concentrations of oestrogen, indicative of the mid-luteal phase of the menstrual cycle, tend to decrease glycogen utilization and reduce blood lactate concentration, it was predicted that time taken to complete a 2000-m rowing trial would be shorter in the mid-luteal phase. Ten eumenorrhoeic, recreationally trained, female volunteers (mean age 33.0 years, s=7.1) completed 2000-m time trials on a Concept 2 rowing ergometer, in both the mid-follicular and mid-luteal phases of their menstrual cycle. In each phase, a 3-min incremental rowing protocol was used to determine a blood lactate concentration of 4 mmol · l?1 (T lac-4mM) and maximum oxygen consumption (VO2max); a five-stroke maximal test was used to establish maximal power. Order of testing was randomized for menstrual cycle phase. Variables (T lac-4mM, VO2max, maximal power) were correlated with speed in the 2000-m time trials, and the effect of menstrual cycle phase on these variables was examined. A blood lactate concentration of 4 mmol · l?1 occurred at a significantly higher mean exercise intensity (mid-luteal vs. mid-follicular: 169.1 W, s=39.1 vs. 159.0 W, s=38.3; P=0.033), heart rate (179 beats · min?1, s=9 vs. 173 beats · min?1, s=11; P=0.0047), and oxygen consumption (2.64 litres · min?1, s=0.66 vs. 2.42 litres · min?1, s=0.62; P=0.04) in the mid-luteal phase than in the mid-follicular phase. There was no significant difference (P=0.11) in 2000-m time trial speed according to menstrual cycle phase. In conclusion, although T lac-4mM differed due to menstrual cycle phase, 2000-m rowing performance was unaffected. Further research into the effects of menstrual cycle on rowing performance of a longer duration, among a more homogenous group of females, is recommended.  相似文献   

15.
Purpose: Correlations between fatigue-induced changes in exercise performance and maximal rate of heart rate (HR) increase (rHRI) may be affected by exercise intensity during assessment. This study evaluated the sensitivity of rHRI for tracking performance when assessed at varying exercise intensities. Method: Performance (time to complete a 5-km treadmill time-trial [5TTT]) and rHRI were assessed in 15 male runners following 1 week of light training, 2 weeks of heavy training (HT), and a 10-day taper (T). Maximal rate of HR increase (measured in bpm·s?1) was the first derivative maximum of a sigmoidal curve fit to HR data recorded during 5 min of running at 8 km·h?1 (rHRI8km·h?1), and during subsequent transition to 13 km·h?1 (rHRI8–13km·h?1) for a further 5 min. Results: Time to complete a 5-km treadmill time-trial was likely slower following HT (effect size ± 90% confidence interval = 0.16 ± 0.06), and almost certainly faster following T (–0.34 ± 0.08). Maximal rate of HR increase during 5 min of running at 8 km·h?1 and rHRI8–13km·h?1 were unchanged following HT and likely increased following T (0.77 ± 0.45 and 0.66 ± 0.62, respectively). A moderate within-individual correlation was found between 5TTT and rHRI8km·h?1 (r value ± 90% confidence interval = –.35 ± .32). However, in a subgroup of athletes (= 7) who were almost certainly slower to complete the 5TTT (4.22 ± 0.88), larger correlations were found between the 5TTT and rHRI8km·h?1 (r = –.84 ± .22) and rHRI8–13km·h?1 (r = –.52 ± .41). Steady-state HR during rHRI assessment in this group was very likely greater than in the faster subgroup (≥ 1.34 ± 0.86). Conclusion(s): The 5TTT performance was tracked by both rHRI8km·h?1 and rHRI8–13km·h?1. Correlations between rHRI and performance were stronger in a subgroup of athletes who exhibited a slower 5TTT. Individualized workloads during rHRI assessment may be required to account for varying levels of physical conditioning.  相似文献   

16.
Abstract

The aim of this study was to assess the validity (Study 1) and reliability (Study 2) of a novel intermittent running test (Carminatti's test) for physiological assessment of soccer players. In Study 1, 28 players performed Carminatti's test, a repeated sprint ability test, and an intermittent treadmill test. In Study 2, 24 players performed Carminatti's test twice within 72 h to determine test–retest reliability. Carminatti's test required the participants to complete repeated bouts of 5 × 12 s shuttle running at progressively faster speeds until volitional exhaustion. The 12 s bouts were separated by 6 s recovery periods, making each stage 90 s in duration. The initial running distance was set at 15 m and was increased by 1 m at each stage (90 s). The repeated sprint ability test required the participants to perform 7 × 34.2 m maximal effort sprints separated by 25 s recovery. During the intermittent treadmill test, the initial velocity of 9.0 km · h?1 was increased by 1.2 km · h?1 every 3 min until volitional exhaustion. No significant difference (P > 0.05) was observed between Carminatti's test peak running velocity and speed at VO2max (v-VO2max). Peak running velocity in Carminatti's test was strongly correlated with v-VO2max (r = 0.74, P < 0.01), and highly associated with velocity at the onset of blood lactate accumulation (r = 0.63, P < 0.01). Mean sprint time was strongly associated with peak running velocity in Carminatti's test (r = ?0.71, P < 0.01). The intraclass correlation was 0.94 with a coefficient of variation of 1.4%. In conclusion, Carminatti's test appears to be avalid and reliable measure of physical fitness and of the ability to perform intermittent high-intensity exercise in soccer players.  相似文献   

17.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

18.
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO2max scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill. The submaximal cycle protocol required participants to achieve a steady-state heart rate equal to at least 70% of age-predicted maximum heart rate (220-age), while the maximal treadmill graded exercise test required participants to exercise to volitional fatigue. Relevant submaximal cycle ergometer test data included a mean (±SD) ending steady-state heart rate and ending workrate equal to 164.2 ± 13.0 bpm and 115.3 ± 27.0 watts, respectively. Relevant non-exercise data included a mean (±SD) body mass (kg), perceived functional ability score, and physical activity rating score of 74.2 ± 15.1, 15.7 ± 4.3, and 4.7 ± 2.1, respectively. Multiple linear regression was used to generate the following prediction of (R = .91, standard error of estimates (SEE) = 3.36 ml·kg?1·min?1): VO2max = 54.513 + 9.752 (gender, 1 = male, 0 = female) – .297 (body mass, kg) + .739 (perceived functional ability, 2–26) + .077 (work rate, watts) – .072 (steady-state heart rate). Each predictor variable was statistically significant (p < .05) with beta weights for gender, body mass, perceived functional ability, exercise workrate, and steady-state heart rate equal to .594, –.544, .388, .305, and –.116, respectively. The predicted residual sums of squares (PRESS) statistics reflected minimal shrinkage (RPRESS = .90, SEEPRESS = 3.56 ml·kg?1·min?1) for the multiple linear regression model. In summary, the submaximal cycle ergometer protocol and accompanying prediction model yield relatively accurate VO2max estimates in healthy college-aged participants using both exercise and non-exercise data.  相似文献   

19.
Strenuous physical exercise of the limb muscles commonly results in damage, especially when that exercise is intense, prolonged and includes eccentric contractions. Many factors contribute to exercise-induced muscle injury and the mechanism is likely to differ with the type of exercise. Competitive sports players are highly susceptible to this type of injury. AM3 is an orally administered immunomodulator that reduces the synthesis of proinflammatory cytokines and normalizes defective cellular immune fractions. The ability of AM3 to prevent chronic muscle injury following strenuous exercise characterized by eccentric muscle contraction was evaluated in a double-blind and randomized pilot study. Fourteen professional male volleyball players from the First Division of the Spanish Volleyball League volunteered to take part. The participants were randomized to receive either placebo (n?=?7) or AM3 (n?=?7). The physical characteristics (mean±s) of the placebo group were as follows: age 25.7±2.1 years, body mass 87.2±4.1?kg, height 1.89±0.07?m, maximal oxygen uptake 65.3±4.2?ml?·?kg?1?·?min?1. Those of the AM3 group were as follows: age 26.1±1.9 years, body mass 85.8±6.1?kg, height 1.91±0.07?m, maximal oxygen uptake 64.6±4.5?ml?·?kg?1?·?min?1. All participants were evaluated for biochemical indices of muscle damage, including concentrations of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatine kinase (CK) and its MB fraction (CK-MB), myoglobin, lactate dehydrogenase, urea, creatinine and γ-glutamyltranspeptidase, both before and 30 days after treatment (over the peak of the competitive season). In the placebo group, competitive exercise (i.e. volleyball) was accompanied by significant increases in creatine kinase (494±51 to 560±53?IU?·?l?1, P?<?0.05) and myoglobin (76.8±2.9 to 83.9±3.1?μg?·?l?1, P?<?0.05); aspartate aminotransferase (30.8±3.0 to 31.1±2.9?IU?·?l?1) and lactate dehydrogenase (380±31 to 376±29?IU?·?l?1) were relatively unchanged after the 30 days maximum effort. AM3 not only inhibited these changes, it led to a decrease from baseline serum concentrations of creatine kinase (503±49 to 316±37?IU?·?l?1, P?<?0.05) and myoglobin (80.1±3.2 to 44.1±2.6?IU?·?l?1, P?<?0.05), as well as aspartate aminotransferase (31.1±3.3 to 26.1±2.7?IU?·?l?1, P?<?0.05) and lactate dehydrogenase (368±34 to 310±3?IU?·?l?1, P?<?0.05). The concentration of CK-MB was also significantly decreased from baseline with AM3 treatment (11.6±1.2 to 5.0±0.7?IU?·?l?1, P?<?0.05), but not with placebo (11.4±1.1 to 10.8±1.4?IU?·?l?1). In conclusion, the use of immunomodulators, such as AM3, by elite sportspersons during competition significantly reduces serum concentrations of proteins associated with muscle damage.  相似文献   

20.
There is a paucity of studies that have evaluated substrate utilisation and protein catabolism during multiday strenuous exercise in athletes. Eleven well-trained male cyclists completed 3 h of race-simulated cycling on 4 consecutive days. Cyclist exercised 2 h postprandially and with carbohydrate supplementation (~50 g · h?1) during exercise. Whole body substrate utilisation was measured by indirect calorimetry, protein catabolism from sweat and urine urea excretion, and blood metabolite concentration was evaluated. Protein catabolism during exercise was significantly greater on days 2–4 (29.9 ± 8.8; 34.0 ± 11.2; 32.0 ± 7.3 g for days 2, 3, and 4, respectively) compared to day 1 (23.3 ± 7.6 g), < 0.05. Fat oxidation was greater at 21 km (~45 min) on days 2–4 (1.06 ± 0.23; 1.08 ± 0.25; 1.12 ± 0.29 g · min?1) compared to day 1 (0.74 ± 0.23 g · min?1, < 0.05), but the rate of carbohydrate and fat oxidation was similar between days at 50 and 80 km. Whole body substrate utilisation is altered on subsequent days of multiday prolonged strenuous cycling that includes a quicker transition to greater fat utilisation from exercise onset and a 28–46% greater reliance on endogenous protein catabolism on all successive days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号