首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.  相似文献   

2.
ABSTRACT

This study identified the effect of badminton lunging directions on impact characteristics, joint kinetics and measurement reliability. A total of 14 badminton players performed 20 lunges in both forehand and backhand sides. Ground reaction force (GRF) and three-dimensional joint moment variables were determined for further analyses. Paired t-tests and Wilcoxon signed-rank tests were performed to determine any differences between the two lunge directions and intra-class correlation (ICC) and sequential averaging analysis (SAA) were used to estimate the minimum number of trials. Compared to the forehand side, participants experienced significantly larger total GRF impulse (+ 3.8%, = 0.021) and transverse moment (hip + 63.5%, < 0.001; knee + 80.7%, = 0.011), but smaller hip (?7.7%), knee (?18.7%) and ankle frontal moments (?58.0%, < 0.05) in backhand lunges. The minimum number of trials was similar for both lunge directions, as the averaged absolute differences was less than one in both ICC and SAA. Furthermore, smaller minimal number of trials was determined by the ICC (7.9–8.0), compared with the SAA approach (9.5–10.3). Lunge direction would influence GRF and joint loading, but not on the measurement reliability. These results give important insights to establish performance or equipment evaluation protocols during badminton lunges.  相似文献   

3.
采用即时红外高速摄影技术及三维测力台同步采集7名优秀羽毛球运动员蹬跨步上网接球动作的三维运动学及动力学数据,并计算各关节角参量、力矩和下肢关节肌群功率变化特征。研究结果表明:髋关节屈肌群、膝关节伸肌群、踝关节屈肌群的快速做功能力对羽毛球运动中蹬跨步上网具有极其重要的影响。同时,膝关节屈肌群的能力对跨步蹬跨步上网避免股后肌群的损伤具有不可忽视的作用,在训练中要加强对股后肌群的专项化力量训练。  相似文献   

4.
ABSTRACT

Ankle sprains are the most common injury in regular badminton players and usually occur at the end of a match or training. The purpose of the present study was to examine the influence of fatigue produced by badminton practice on the lower limb biomechanics of badminton players. It was hypothesized that fatigue induces ankle kinematic and lower leg muscle activity changes which may increase the risk of ankle sprain. Ankle kinematics, ankle kinetics and muscles activities of 17 regular badminton players were recorded during lateral jumps before and after an intense badminton practice session. Post-fatigue, ankle inversion at foot strike and peak ankle inversion increased (+2.6°, p = 0.003 and +2.5°, p = 0.005, respectively). EMG pre-activation within 100 ms before foot landing significantly decreased after fatigue for soleus (?23.4%, p = 0.031), gastrocnemius lateralis (?12.2%, p = 0.035), gastrocnemius medialis (?23.3%, p = 0.047) and peroneus brevis (?17.4%, p = 0.036). These results demonstrate impaired biomechanics of badminton players when fatigue increases, which may cause a greater risk of experiencing an ankle sprain injury.  相似文献   

5.
The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip–shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.  相似文献   

6.
Abstract

The purpose of the present study was to compare the three-dimensional kinematics of the lower extremities and ground reaction forces between the instep kick and the kick with the outside area of the foot (outstep kick) in pubertal soccer players. Ten pubertal soccer players performed consecutive kicking trials in random order after a two-step angled approach with the instep and the outstep portion of the foot. Three-dimensional data and ground reaction forces were measured during kicking. Paired t-tests indicated significantly higher (P < 0.05) ball speeds and ball/foot speed ratios for the instep kick compared with the outstep kick. Non-significant differences in angular and linear sagittal plane kinematic parameters, temporal characteristics, and ground reaction forces between the instep and outstep soccer kicks were observed (P > 0.05). In contrast, analysis of variance indicated that the outstep kick displayed higher hip internal rotation and abduction, knee internal rotation, and ankle inversion than the instep kick (P < 0.05). Our results suggest that the instep kick is more powerful than the outstep kick and that different types of kick require different types of skill training.  相似文献   

7.
For fencing, speed of the lunge is considered critical to success. The aim of this study is to investigate determinants of lunge speed based on biomechanics. Ground reaction force (GRF) and three-dimensional kinematic data were collected from 7 elite fencers and 12 intermediate-level fencers performing maximum-effort lunges. The results showed that elite fencers acquired a higher horizontal peak velocity of the centre of gravity (HPV) and concomitantly a higher horizontal peak GRF exerted by rear leg (PGRF) than intermediate-level fencers (P?P?P?P?≤?.05). Our findings suggest that training aimed at enhancing strength and power of rear knee extensors is important for fencers to improve speed of the lunge. Also, increasing the extension of rear knee during the lunge, at the same time decreasing the flexion of the forward knee before extension are positive for lunge performance.  相似文献   

8.
Purpose

The purposes of this study were to: (a) examine the effect of experience and goal constraints (speed, accuracy) on kicking patterns; (b) determine if effective striking mass was independent of ankle velocity at impact; and (c) determine the accuracy of kicks relative to independent factors.

Method

Twenty participants were recruited to kick at 3 different velocities with and without an accuracy requirement. Multivariate analysis of variance determined if relative timing of joint angular velocities changed during the kick. Chi-square analysis determined if calculated effective mass was independent of ankle velocity at impact. Analysis of variance (ANOVA) was used to examine differences in absolute constant error and variable error according to independent factors.

Results

Results indicated that experience and speed affect absolute timing of joint velocities with no changes in the relative timing of peak joint velocity across independent factors. Chi-square analysis indicated that calculated effective mass is not independent of ankle velocity. ANOVA indicated that experienced performers displayed less variability error than did inexperienced performers.

Conclusion

It was concluded that: (a) Experience, velocity, and accuracy do not affect the relative timing of kicks; (b) kickers trade ankle velocity at impact for greater effective striking mass and ball velocity; and (c) variability in ball placement is affected by experience.  相似文献   

9.
The purpose was to analyse the vertical ground reaction forces (Fz) of head-out aquatic exercises [stationary running (SR), frontal kick (FK), cross-country skiing (CCS), jumping jacks (JJ), adductor hop (ADH) and abductor hop (ABH)] at two cadences in both aquatic and dry land environments. Twelve young women completed two sessions in each environment, each consisting of three exercises performed at two cadences (first and second ventilatory thresholds – C1 and C2, respectively). Two-way and three-way repeated measures analysis of variance were used to the statistical analysis. The results showed that the peak Fz and impulse were significantly lower in the aquatic environment, resulting in values from 28.2% to 58.5% and 60.4% to 72.8% from those obtained on dry land, respectively. In the aquatic environment, the peak Fz was lower and the impulse was higher at the C1 than at the C2. Furthermore, it was observed that SR and FK (0.9–1.1 BW) elicited a significantly higher peak Fz values compared to the ADH and JJ exercises (0.5–0.8 BW). It can be concluded that the aquatic environment reduces the Fz during head-out aquatic exercises. It should be noted that its magnitude is also dependent on the intensity and the identity of the exercise performed.  相似文献   

10.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

11.
The ankle joint’s role in shock absorption during landing has been researched in many studies, which have found that landing with higher amounts of plantarflexion (PF) results in lower peak vertical ground reaction forces and loading rates. However, there has not yet been a study that compares drop landings within participants along a quantitative continuum of PF angles. Using a custom-written real-time feedback program, participants adjusted their ankles to an instructed PF angle and dropped onto two force platforms. For increasing PF, peak ground reaction force and peak loading rate during weight acceptance decreased significantly. The hip’s contribution to peak support moment decreased as PF at initial contact increased up to 30°. The ankle and knee contributions increased over this same continuum of PF angles. There appears to be no optimal PF angle based on peak ground reaction force and loading rate measurements, but there may be an optimum where joint contributions to peak support moment converge and the hip moment’s contribution is minimised.  相似文献   

12.
目的:确定运动员在落地后即刻启动完成侧切变向(LSC)动作的下肢踝、膝和髋三关节矢状面的运动学和动力学特点,并与平地跑动侧切变向(SC)对比分析、探讨这些差异对下肢关节造成的影响。方法:以14名高水平足球运动员为背景的大学生完成落地侧切和平跑侧切动作时的下肢运动学和动力学数据进行采集与分析。结果:LSC动作的踝、膝关节ROM和关节角速度显著增加,髋关节ROM则呈相反趋势(P<0.05或P<0.01);LSC的踝、膝和髋关节力矩峰值,踝、髋关节功率峰值呈现显著大于SC(P<0.01),膝关节功率峰值小于SC(P<0.05);LSC在水平向后、垂直向上地反峰值及峰值加载率有明显的增加(P<0.01),水平向右地反无明显差异(P>0.05)。结论:LSC虽然略降低了膝关节功率峰值,但其余所有运动学、动力学及GRF都预示其下肢关节所承受的损伤风险更高,尤其是踝关节和膝关节。踝关节的高功率和跖屈肌的持续紧张、伸膝力矩和三维地反的显著升高,使得该动作比公认高损伤风险的平跑侧切损伤风险几率更大。  相似文献   

13.
目的:确定跑步疲劳进程中下肢生物力学模式的变化,包括垂直和前后地面反作用力(ground reaction force,GRF)、垂直地面反作用力(vertical ground reaction force,vGRF)负载率、关节力学和刚度。方法:14名男性受试,采用Vicon红外摄像头和Bertec三维测力跑台,每隔2 min采集受试疲劳干预中的15 s GRF数据以及标记点轨迹。受试需穿着统一的跑鞋在测力跑台以恒速3.33 m/s跑至疲劳。满足以下标准时,干预结束:1)最大心率大于当下年龄的90%;2)受试不能继续跑步。对比受试跑至疲劳进程中4个时刻(疲劳前、33%、67%和100%)的着地冲击和下肢三关节触地角度、最大角度、关节活动度、角度变化量、关节蹬伸力矩和刚度等特征,采集并分析受试安静状态、疲劳后即刻、疲劳后4 min、疲劳后9 min的血乳酸浓度。结果:与疲劳前相比,1)血乳酸浓度在疲劳后即刻、疲劳后4 min和疲劳后9 min均显著增加;2)垂直/前后矢状轴GRF和vGRF负载率等参数在疲劳干预过程中均未观察到显著性变化;3)髋关节活动度在疲劳过程的33%、67%和100%时刻显著增加,膝关节活动度在67%时刻显著增加;4)踝关节运动学及踝、膝和髋关节的蹬伸力矩峰值均无变化;5)垂直刚度在67%和100%时刻显著降低。结论:疲劳干预过程中,GRF特征参数均没有明显变化,但是观察到下肢运动学和动力学模式的非线性改变。特别是从疲劳干预中期开始,人体下肢通过增加髋、膝关节活动度并减小垂直刚度实现“软着陆”策略,维持相似的冲击力特征,以减小长时间跑步可能带来损伤的风险。  相似文献   

14.
文章探讨了后蹬腿动作的力学原理,就如何提高后蹬腿速度进行了分析。结论是:各关节曲线中,髋关节速度较小且变化不大;膝关节、踝关节和脚尖的速度曲线变化明显;膝关节较早达到速度峰值,然后减速,接着在踢中目标瞬间膝和脚几乎同时达到速度最大值。  相似文献   

15.
High impact forces during gymnastic landings are thought to contribute to the high rate of injuries. Lower limb joint flexion is currently limited within gymnastic rules, yet might be an avenue for reduced force absorption. This study investigated whether lower limb flexion during three gymnastic landings was related to force. Differences between landings were also explored. Twenty-one elite women's artistic gymnasts performed three common gymnastic techniques: drop landing (DL), front and back somersaults. Ankle, knee, and hip angles, and vertical ground reaction force [(vGRF) magnitude and time to peak], were measured using three-dimensional motion analysis and force platform. The DL had significantly smaller peak vGRF, greater time to peak vGRF and larger lower limb flexion ranges than landing from either somersault. Peak vGRF and time to peak vGRF were inversely related. Peak vGRF was significantly reduced in gymnasts who landed with greater hip flexion, and time to peak was significantly increased with increasing ankle, knee, and hip flexion. Increased range of lower limb flexion should be encouraged during gymnastic landings to increase time to peak vGRF and reduce high impact force. For this purpose, judging criteria limitations on lower limb flexion should be reconsidered.  相似文献   

16.
Abstract

Little is known of the performance characteristics of the shotokan karate mae-geri kick. The aim of this study was to compare the execution time, the lower limb kinetics and kinematics, and their respective repeatability in the mae-geri kick of karate athletes of two different standards. Seventeen adult black belt karate competitors (9 national and 8 international athletes) performed six kicks with their dominant lower limb on a striking surface, combining maximum force impact and velocity. Execution time of movement and lower limb kinematics were recorded with a high-speed camera. Maximum force at impact and the forces exerted on the ground were measured using three force plates. The duration of the kick was significantly shorter for international than for national standard athletes. However, no significant difference in the maximum impact force of the kick was observed between the two groups. In addition, significant kinematic differences were observed between the groups, with two angles of motion and one velocity peak occurring sooner in the kick movement for the international athletes, specifically for the knee joint. International athletes also performed the kick with a significantly higher repeatability for duration and kinematics, specifically during the pre-loading phase that precedes the attack phase. We conclude that theduration of the kick and repeatability of lower limb kinematics could be useful in selecting top-level karate athletes and monitoring their training status.  相似文献   

17.
Side-to-side differences of lower extremities may influence the likelihood of injury. Moreover, adding the complexity of jump-landing direction would help to explain lower extremity control during sport activities. The aim was to determine the effects of limb dominance and jump-landing direction on lower extremity biomechanics. Nineteen female volleyball athletes participated. Both dominant limbs (DLs) and non-dominant limbs (NLs) were examined in single-leg jump-landing tests in four directions, including forward (0°), diagonal (30° and 60°), and lateral (90°) directions. Kinematic marker trajectories and ground reaction forces were collected using a 10 camera Vicon system and an AMTI force plate. Repeated measures ANOVA (2?×?4, limb?×?direction) was used to analyse. The finding showed that, at peak vertical GRF, a significant interaction of limb dominance and direction effects was found in the hip flexion angle and lower extremity joint kinetics (p?<?.05). NLs and DLs exhibited significantly different strategies while landing in various directions. Significantly higher increase of ankle dorsiflexion angle was observed in lateral direction compared to other directions for both DLs and NLs (p?<?.05). Increasingly using ankle dorsiflexion was observed from the forward to the lateral direction for both DLs and NLs. However, NLs and DLs preferentially used different strategies of joint moment organization to respond to similar VGRFs in various directions. The response pattern of DLs might not be effective and may expose DLs to a higher injury risk, especially with regard to landing with awkward posture compared with NLs.  相似文献   

18.
Abstract

This study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique. Participants also completed a series of isometric knee extensions to measure the rate of torque development and peak torque. CMJ height ranged from 0.38 to 0.73 m (mean 0.55 ± 0.09 m). CMJ peak knee power, peak ankle power and take-off shoulder angle explained 74% of this observed variation. CMJ kinematic (58%) and CMJ kinetic (57%) parameters explained a much larger proportion of the jump height variation than the isometric parameters (18%), suggesting that coachable technique factors and the joint kinetics during the jump are important determinants of CMJ performance. Technique, specifically greater ankle plantar-flexion and shoulder flexion at take-off (together explaining 58% of the CMJ height variation), likely influences the extent to which maximal muscle capabilities can be utilised during the jump.  相似文献   

19.
Abstract

Weight status has been shown to have a negative impact on children's competence in performing fundamental movement skills (FMSs). Following ethics approval and informed consent, 281 children in years 2–6 from a school in central England volunteered to participate. Each child performed eight FMSs (run, hop, gallop, jump, balance, kick, throw and catch) three times, all attempts were video-recorded. Video analysis was performed (Quintic Biomechanics software) using the Process Orient Checklist (subjective measurement). Height and weight were measured to calculate body mass index (BMI) and weight status was determined. Results highlighted that year group (age) had a significant effect on seven out of the eight skills (not kick). Year 4 (aged 8–9 years) significantly scored lower in all three locomotor skills (run, hop and gallop) at this age, whereas Year 5 (aged 9–10 years) all significantly peaked at the object control skills (catch and throw) at this age. Weight status (BMI) significantly affected the run, identifying that a child with a larger BMI will have a lower mastery level of the run. Gender significantly affected the kick, throw and balance, with girls outperforming in the balance and the boys in the kick and throw. By highlighting that children at different ages will have a lower score in different skills, the effect of BMI and gender on certain FMS is important knowledge for the target of intervention in primary school children.  相似文献   

20.
Little is known of the performance characteristics of the shotokan karate mae-geri kick. The aim of this study was to compare the execution time, the lower limb kinetics and kinematics, and their respective repeatability in the mae-geri kick of karate athletes of two different standards. Seventeen adult black belt karate competitors (9 national and 8 international athletes) performed six kicks with their dominant lower limb on a striking surface, combining maximum force impact and velocity. Execution time of movement and lower limb kinematics were recorded with a high-speed camera. Maximum force at impact and the forces exerted on the ground were measured using three force plates. The duration of the kick was significantly shorter for international than for national standard athletes. However, no significant difference in the maximum impact force of the kick was observed between the two groups. In addition, significant kinematic differences were observed between the groups, with two angles of motion and one velocity peak occurring sooner in the kick movement for the international athletes, specifically for the knee joint. International athletes also performed the kick with a significantly higher repeatability for duration and kinematics, specifically during the pre-loading phase that precedes the attack phase. We conclude that the duration of the kick and repeatability of lower limb kinematics could be useful in selecting top-level karate athletes and monitoring their training status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号