首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The aim of this study was to determine the effects of external loading on power output during a squat jump on a force platform in athletes specializing in strength and power events (6 elite weight-lifters and 16 volleyball players) and in 20 sedentary individuals. Instantaneous power was computed from time-force curves during vertical jumps with and without an external load (0, 5 or 10 kg worn in a special vest). The jumps were performed from a squat position, without lower limb counter-movement or an arm swing. Peak instantaneous power corresponded to the highest value of instantaneous power during jumping. Average power throughout the push phase of the jump was also calculated. A two-way analysis of variance showed significant interactions between the load and group effects for peak instantaneous power (P< 0.01) and average power (P< 0.001). Peak instantaneous power decreased significantly in sedentary individuals when moderate external loads were added. The peak instantaneous power at 0 kg was greater than that at 5 and 10 kg in the sedentary individuals. In contrast, peak instantaneous power was independent of load in the strength and power athletes. Mean power at 0 kg was significantly lower than at 5 kg in the athletes; at 0 kg it was significantly higher than at 10 kg in the sedentary males and at 5 and 10 kg in the sedentary females. In all groups, the force corresponding to peak instantaneous power increased and the velocity corresponding to peak instantaneous power decreased with external loading. The present results suggest that the effects of external loading on peak instantaneous power are not significant in strength and power athletes provided that the loads do not prevent peak velocity from being higher than the velocity that is optimal for maximal power output.  相似文献   

2.
Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.  相似文献   

3.
Abstract

Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.  相似文献   

4.
利用击剑运动员连续蹲跳的动作速度监控结果来调整体能训练负荷,阐述监控结果与基础体能、专项体能之间的关系。方法:对13名男子击剑运动员(佩剑7名,重剑6名)进行为期3个月连续10次蹲跳的数据化监控,根据监控的即时结果对运动员进行训练负荷的调整。在实验前后进行1RM深蹲、深蹲相对力量、原地纵跳、30 m冲刺跑、30 s双摇跳绳、T型测试、5-10-5变向灵敏测试以及3 000 m耐力跑测试。结果:击剑运动员在1RM深蹲、深蹲相对力量、30 s双摇跳绳,以及3 000 m耐力跑上的提高有显著性差异。结论:基于蹲跳动作速度的科学化数据监控来调整的体能训练,对于击剑运动员的基础体能以及专项体能提升均有效果,确保力量水平与有氧能力获得同步增长,可作为训练的常规监控手段以提高训练效益。  相似文献   

5.
Eccentric strength training is thought to be important for improving functional performance. A form of training that may enhance the eccentric training stimulus is the attachment of a rubber bungy to the strength-training apparatus in such a way that the return velocity and, therefore, the force required to decelerate the load at the end of the eccentric phase are increased. To determine the effects of elastic bungy training, we performed two studies. In the first, we examined the electromyographic (EMG) and kinematic characteristics of three different squat techniques: traditional squat, non-bungy jump squat and bungy jump squat. In the second study, we examined whether jump squat training with and without the attachment of a rubber bungy to an isoinertial supine squat machine affects muscle function, multidirectional agility, lunge ability and single leg jump performance. The EMG activity of the vastus lateralis and gastrocnemius muscles was recorded. An instrumented isoinertial supine squat machine was used to measure maximal strength and various force, velocity and power measures in both studies. Participants were randomly assigned to one of three groups: a control group and two weight-trained groups, one of which performed bungy squat jumps and one of which performed non-bungy squat jumps. The two experimental groups performed 10 weeks of ballistic weight training. The kinematic and EMG characteristics of the bungy and non-bungy squat techniques differed significantly from those of the traditional squat on all the variables measured. The only difference between the bungy squat and non-bungy squat training was greater EMG activity during the later stages (70-100%) of the eccentric phase of the bungy squat condition. The 10 weeks of bungy squat and non-bungy squat jump weight training were found to be equally effective in producing improvements in a variety of concentric strength and power measures (10.6-19.8%). These improvements did not transfer to improved performance for the single leg jump and multidirectional agility. However, bungy weight training did lead to a significant improvement in lunge performance (21.5%) compared with the other groups.  相似文献   

6.
目的:探讨各种轻负荷条件下半蹲起力-时间曲线特征和力增加速率与各种肌肉收缩运动表现的相关性;分析轻负荷抗阻练习与等长、等动及纵跳动作的下肢发力特征间的内在生物力学联系。方法:募集日本筑波大学9名男子运动员,在测力台上进行不同负荷的半蹲起(Half-squat,HS)以获取地面反作用数据(GRF),进而计算出力增加速率(RFD)。进行最大负荷(>1RM)的静力收缩以测得最大力量(Fmax),进行各种纵跳练习(SJ、CMJ、RJ)以测得跳跃能力参数;采用多关节等速测力系统测取不同角速度下的膝伸展峰力矩(Peak torque,PT);采用Pearson相关系数反映不同负荷半蹲起RFD值与最大力量、跳跃能力和等速膝伸展峰力矩间的相关关系。结果:1)轻负荷半蹲起动作的平均发力时间在0.2 s以内,RFD值在0~60 ms区间内相近或相等;2)20 kg、40 kg和60 kg半蹲起RFD值与Fmax之间无相关关系(P>0.05),60 kg半蹲起RFD值与300°/s条件下的膝伸展PT存在显著性正相关(P<0.01);3)CMJ-JH和RJ-JH显著高于SJ-JH(P<0.01),而RJ的RFD值显著大于SJ和CMJ(P<0.01);4)40 kg半蹲起RFD值与SJ-JH、CMJ-JH之间存在显著性正相关(P<0.05);5)RFD与Fpeak和T-Fpeak之间分别存在显著性正相关和负相关(P<0.05),但Fpeak和T-Fpeak之间未存在相关关系(P>0.05)。结论:轻负荷半蹲起可以作为短跑、游泳等项目运动员起动力量训练手段,以减少起跑和起跳入水的反应时,强化起点技术;在20~60 kg负荷范围内,RFD值在短时间内保持相对恒定;轻负荷半蹲起在保持高输出功率的同时,具有更加高速的发力特征,可作为提高优秀运动员纵跳能力的有效练习手段。  相似文献   

7.
ABSTRACT

This study aimed to examine the effects of two jump squat (JS) training programs involving different loading ranges in under-20 soccer players during a preseason period. Twenty-three elite young soccer players performed sprint speed (at 5-, 10-, and 20-m), change-of-direction (COD) speed, JS peak-power (PP), and countermovement jump (CMJ) tests pre and post four weeks of training. Athletes were pair-matched in two groups according to their optimum power loads (OPL) as follows: lower than OPL (LOPL; athletes who trained at a load 20% lower than the OPL) and higher than OPL (HOPL; athletes who trained at a load 20% higher than the OPL). Magnitude-based inferences were used to compare pre- and post-training measures. Meaningful increases in the PP JS were observed for both groups. Likely and possible improvements were observed in the 5- and 10-m sprint velocity in the LOPL group. Meanwhile, possible and likely improvements were observed in the CMJ, 5- and 10-m sprint velocity, and COD speed in the HOPL group. Overall, both training schemes induced positive changes in athletic performance. Soccer coaches and sport scientists can implement the JS OPL-based training schemes presented here, either separately or combined, to improve the physical performance of youth soccer players.  相似文献   

8.
The present study explored the method of testing muscle mechanical properties through the linear force–velocity (FV) relationships obtained from loaded vertical jumps. Specifically, we hypothesised that the FV relationship parameters depicting the force, power, and velocity of the tested muscles will differ among individuals of different physical fitness. Strength trained, physically active, and sedentary male participants (N = 10 + 10 + 10; age 20–29 years) were tested on maximum countermovement and squat jumps where manipulation of external loads provided a range of F and V data. The observed FV relationships of the tested leg muscles were approximately linear and mainly strong (median correlation coefficients ranged from 0.77 to 0.92; all p < 0.05), independently of either the tested group or the jump type. The maximum power revealed higher values in the strength trained than in the physically active and sedentary participants. This difference originated from the differences in F-intercepts, rather than from the V-intercepts. We conclude that the observed parameters could be sensitive enough to detect the differences among both the individuals of different physical fitness and various jump types. The present findings support using loaded vertical jumps and, possibly, other maximum performance multi-joint movements for the assessment of mechanical properties of active muscles.  相似文献   

9.
Abstract

The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.  相似文献   

10.
There are two perceived criterion methods for measuring power output during the loaded countermovement jump (CMJ): the force platform method and the combined method (force platform + optoelectronic motion capture system). Therefore, the primary aim of the present study was to assess agreement between the force platform method and the combined method measurements of peak power and mean power output during the CMJ across a spectrum of loads. Forty resistance-trained team sport athletes performed maximal effort CMJ with additional loads of 0 (body mass only), 25, 50, 75 and 100% of body mass (BM). Bias was present for peak velocity, mean velocity, peak power and mean power at all loads investigated, and present for mean force up to 75% of BM. Peak velocity, mean velocity, peak power and mean power 95% ratio limits of agreement were clinically unacceptable at all loads investigated. The 95% ratio limits of agreement were widest at 0% of BM and decreased linearly as load increased. Therefore, the force platform method and the combined method cannot be used interchangeably for measuring power output during the loaded CMJ. As such, if power output is to be meaningfully investigated, a standardised method must be adopted.  相似文献   

11.
Abstract

Currently, whole-body vibration is being used to promote enhanced performance. Many coaches and athletes believe that it can acutely enhance explosive performance and power output. However, the scientific literature is unclear as to whether this enhancement occurs. The purpose of this study was to examine the acute effects of whole-body vibration on static jump performance, including jump height, peak force, rate of force development, and peak power. Fourteen recreationally active individuals (5 females, 9 males) participated in three separate randomized treatment sessions. Treatment 1 consisted of no vibration while treatment 2 and treatment 3 incorporated whole-body vibration. The whole-body vibration protocol consisted of three 30-s bouts of vibration performed at 30 Hz and low amplitude (~3 mm) with a 30-s rest between bouts. Treatment 1 was identical in duration to both treatments 2 and 3, but did not contain any vibration. Five minutes after each treatment, the participants performed the static jump protocols. Two (data averaged) non-weighted static jumps and two 20 kg weighted jumps were performed. Treatments 1 vs. 2, 1 vs. 3, and 2 vs. 3 were calculated for each variable at both 0 kg and 20 kg. Jump height, peak force, rate of force development, and peak power were analysed using a one-way analysis of variance with repeated measures. The intra-class correlations comparing the two trials of each jump for each of the three treatments were ≥0.92. Compared with the no-vibration condition, jump height showed a non-significant increase as a result of whole-body vibration for both unweighted and weighted jumps; peak force, rate of force development, and peak power were not statistically different. The results indicate that whole-body vibration has no effect on jump height, peak force, rate of force development or peak power during static jumping.  相似文献   

12.
An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

13.
The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.  相似文献   

14.
This study aimed to correlate, compare, and determine the reliability of force, velocity, and power values collected with a force plate (FP) and a linear transducer during loaded jumps. Twenty-three swimmers performed an incremental loading test at 25, 50, 75, and 100% of their own body weight on a FP. A linear velocity transducer (LVT) was attached to the bar to assess the peak and the mean values of force, velocity, and power. Both the peak variables (r = 0.94 – 0.99 for peak force, r = 0.83 – 0.91 for peak velocity, and r = 0.90–0.94 for peak power; p < 0.001) and the mean variables (r = 0.96–0.99 for mean force, r = 0.87–0.89 for mean velocity, and r = 0.93–0.96 for mean power; p < 0.001) were strongly correlated between both measurement tools. Differences in the shape of the force-, velocity-, and power-time curves were observed. The LVT data showed a steeper increase in these variables at the beginning of the movement, while the FP recorded larger values in the latter part. Peak values were more reliable than mean values. These results suggest that the LVT is a valid tool for the assessment of loaded squat jump.  相似文献   

15.
Abstract

An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

16.
The aim of this study was to examine the effect of bilateral asymmetry of muscle strength on maximal height of the squat jump. A computer simulation technique was used to develop two kinds of 3D human lower limb musculoskeletal model (model-symmetry and model-asymmetry). The total muscle strength of the two models was set to be identical. Bilateral muscle strength was equal in the model-symmetry simulation, while the model-asymmetry simulation was performed with a 10% bilateral strength asymmetry. A forward dynamics approach was used to simulate squat jumps. The squat jumps were successfully generated, producing jump heights of 0.389 m for model-symmetry and 0.387 m for model-asymmetry. The small difference in height (0.5%) indicated that the effect of the 10% bilateral asymmetry of muscle strength on jump height is negligible. With model-asymmetry, the strong leg compensated for the muscle strength deficit of the weak leg. Importantly, the mono-articular and large extensor muscles of the hip and knee joint of the strong leg, including the gluteus maximus, adductor magnus, and vasti, compensated for the muscle strength deficit of the weak leg.  相似文献   

17.
The aim of this study was to characterize sprint ability, anthropometry, and lower extremity power in the US National Team Skeleton athletes. Fourteen athletes (male n = 7; mean +/- SD: height 1.794 +/- 0.063 m, body mass 81.2 +/- 3.7 kg, age 26.9 +/- 4.1 years; female n = 7; 1.642 +/- 0.055 m, 60.1 +/- 5.9 kg, 27.3 +/- 6.9 years) volunteered to participate. Sprinting ability was measured over multiple intervals using custom infrared timing gates in both an upright and a crouched sprint. The crouched sprint was performed while pushing a wheeled-simulated skeleton sled on rails on an outdoor skeleton and bobsleigh start track. Crouched skeleton sprint starts were able to achieve about 70% to 85% of the upright sprint times. The mean somatotype ratings for females were: 3.5-3.5-2.1, and males: 3.6-4.9-1.9. Lower extremity strength and power were measured via vertical jumps on a portable force platform using squat and countermovement jumps, and jumps with added mass. Jump height, power, rate offorce development and peak force were determined from force-time data. Lower extremity strength and power were strongly correlated with both upright and crouched sprint times. The results indicated that these athletes are strong sprinters with varying body structures, mostly mesomorphic, and that stronger and more powerful athletes tend to be better starters.  相似文献   

18.
ABSTRACT

Purpose: A vertical jump (VJ) is a common task performed in several sports, with the height achieved correlated to skilled performance. Loaded VJs are often used in the training of recreational and professional athletes. The bilateral deficit (BLD), which refers to the difference between the heights achieved by a bilateral jump and the sum of two unilateral jumps, has not been reported for loaded jumps and the findings for unloaded jumps are inconclusive. The purpose of this study was threefold: (a) to quantify and compare BLD in countermovement (CMJ) and squat jumps (SJ), (b) to explore the effects of an additional 10% of body weight (BW) load on the BLD in both CMJ and SJ, and (c) examine the relationship between magnitude of BLD and jump performance in both jumps and conditions. Methods: Forty participants (22 for CMJ and 18 for SJ) performed a bilateral jump and unilateral jumps on each leg with and without an added load equivalent to 10% of each participant’s bodyweight. Results: BLD was evident in all conditions, with CMJ BLD values nearly double those for the SJ. The extra load did not affect the magnitude of BLD. BLD had a significant correlation with unilateral jump height, expect for the 110%BW SJ. Conclusions: BLD is present in SJs and CMJs at both loaded and unloaded conditions. The SJs have about half of the BLD observed in CMJs regardless of additional load. Participants who had higher single leg jumps seemed to also have higher BLDs, but there was no evidence of association between the bilateral jump height and BLD.  相似文献   

19.
The aim of this study was to identify the anthropometric and physical prerequisites for high difficulty floor tumbling and vaulting. Twenty 8-14 year old female talent-selected gymnasts performed handstand push-offs, and single and multiple jumps on a portable Kistler force plate. The force curves were analysed using Kistler and Excel software to obtain peak displacement, peak take-off force, and power The gymnasts were also assessed for sprinting, with and without vaulting, and standing broad jump performances. Video footage from the vault take-off was analysed using Video Expert II software to obtain the horizontal and vertical take-off velocities. Each gymnast's best vault starting score, three best floor tumbling skills, and anthropometric characteristics were recorded. Statistical analysis included one-way analysis of variance (ANOVA) to examine the effect of age (8-10 years, 11-12 years, 13-14 years) on the performance measures and linear regression analysis with performance start score for vault or best floor tumbling score as the outcome variable. The best regression model for indicating vaulting talent had, as predictor variables, resultant velocity at take-off from the board, squat jump power, and average power during the last five jumps in the continuous bent-leg jump series. The best regression model for indicating floor tumbling ability had, as predictor variables, age, vault running velocity, and reduced ground contact time in a handstand push-off.  相似文献   

20.
PurposeThis study aimed to examine the reliability and validity of load−velocity (L–V) relationship variables obtained through the 2-point method using different load combinations and velocity variables.MethodsTwenty men performed 2 identical sessions consisting of 2 countermovement jumps against 4 external loads (20 kg, 40 kg, 60 kg, and 80 kg) and a heavy squat against a load linked to a mean velocity (MV) of 0.55 m/s (load0.55). The L–V relationship variables (load-axis intercept (L0), velocity-axis intercept (v0), and area under the L–V relationship line (Aline)) were obtained using 3 velocity variables (MV, mean propulsive velocity (MPV), and peak velocity) by the multiple-point method including (20–40–60–80–load0.55) and excluding (20–40–60–80) the heavy squat, as well as from their respective 2-point methods (20–load0.55 and 20–80).ResultsThe L–V relationship variables were obtained with an acceptable reliability (coefficient of variation (CV) ≤ 7.30%; intra-class correlation coefficient ≥ 0.63). The reliability of L0 and v0 was comparable for both methods (CVratio (calculated as higher value/lower value): 1.11–1.12), but the multiple-point method provided Aline with a greater reliability (CVratio = 1.26). The use of a heavy squat provided the L–V relationship variables with a comparable or higher reliability than the use of a heavy countermovement jump load (CVratio: 1.06–1.19). The peak velocity provided the load–velocity relationship variables with the greatest reliability (CVratio: 1.15–1.86) followed by the MV (CVratio: 1.07–1.18), and finally the MPV. The 2-point methods only revealed an acceptable validity for the MV and MPV (effect size ≤ 0.19; Pearson's product-moment correlation coefficient ≥ 0.96; Lin's concordance correlation coefficient ≥ 0.94).ConclusionThe 2-point method obtained from a heavy squat load and MV or MPV is a quick, safe, and reliable procedure to evaluate the lower-body maximal neuromuscular capacities through the L–V relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号