首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g · kg?1 body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15–20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 ± 2.2% vs. 23.1 ± 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 ± 3.1% and 21.2 ± 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.  相似文献   

2.
The main purpose of this study was to compare the effect of the constant load and self-paced exercise with similar total work on autonomic control after endurance exercise. Ten physically active men were submitted to (i) a maximal incremental exercise test, (ii) a 4-km cycling time trial (4-km TT), and (iii) a constant workload test with identical total external work performed at 4-km TT. Gas exchange was measured throughout the tests, while blood lactate, heart rate, and heart rate variability (HRV) were measured during the passive recovery. Power output measured at the last lap (i.e. 3600–4000?m) of 4-km TT (316?±?89?W) was statistically higher than power output measured at the end of the constant workload exercise (211?±?42?W). The 4-km TT produced higher values of blood lactate concentration (8.8?±?2.1?mmol?L?1) than the constant workload test (7.8?±?2.1?mmol?L?1). The heart rate recovery measured at 60?s (constant workload: 37?±?7?bpm; 4-km TT: 30?±?6) and 120?s (constant workload: 57?±?9?bpm; 4-km TT: 51?±?9?bpm) were higher in the constant workload than in the self-paced exercise. The HRV (i.e. RMSSD30s) was statistically higher in the constant load exercise measured at 120, 420, 450, 480, 540, and 570?s than the self-paced exercise. These findings suggest that the autonomic control responses were dependent of the endurance exercise modalities, with parasympathetic activity being delayed after self-paced exercise, as evidenced by post-exercise heart rate indices.  相似文献   

3.
In this study, we examined the effects of upper-body pre-cooling before intermittent sprinting exercise in a moderate environment. Seven male and three female trained cyclists (age 26.8±5.5 years, body mass 68.5±9.5?kg, height 1.76±0.13?m, [Vdot]O2peak 59.0±11.4?mL?·?kg?1?·?min?1; mean±s) performed 30?min of cycling at 50% [Vdot]O2peak interspersed with a 10-s Wingate cycling sprint test at 5?min intervals. The exercise was performed in a room controlled at 22oC and 40% relative humidity. In the control session, the participants rested for 30?min before exercise. In the pre-cooling session, the participants wore the upper segment of a liquid conditioning garment circulating 5oC coolant until rectal temperature decreased by 0.5oC. Rectal temperature at the start of exercise was significantly lower in the pre-cooling (36.5±0.3oC) than in the control condition (37.0±0.5oC), but this difference was reduced to a non-significant 0.4oC throughout exercise. Mean skin temperature was significantly lower in the pre-cooling (30.7±2.3oC) than in the control condition (32.5±1.6oC) throughout exercise. Heart rate during submaximal exercise was similar between the two conditions, although peak heart rate after the Wingate sprints was significantly lower in the pre-cooling condition. With pre-cooling, mean peak power (909±161?W) and mean overall power output (797±154?W) were similar to those in the control condition (peak 921±163?W, mean 806±156?W), with no differences in the subjective ratings of perceived exertion. These results suggest that upper-body pre-cooling does not provide any benefit to intermittent sprinting exercise in a moderate environment.  相似文献   

4.
This study examined if short-duration record power outputs can be predicted with the Anaerobic Power Reserve (APR) model in professional cyclists using a field-based approach. Additionally, we evaluated if modified model parameters could improve predictive ability of the model. Twelve professional cyclists (V?O2max 75 ± 6 ml?kg?1?min?1) participated in this investigation. Using the mean power output during the last stage of an incremental field test, sprint peak power output and an exponential constant describing the decrement in power output over time, a power-duration relationship was established for each participant. Record power outputs of different durations (5 to 180 s) were collected from training and competition data and compared to the predicted power output from the APR model. The originally proposed exponent (k = 0.026) predicted performance within an average of 43 W (Standard Error of Estimate (SEE) of 32 W) and 5.9%. Modified model parameters slightly improved predictive ability to a mean of 34–39 W (SEE of 29 – 35 W) and 4.1 – 5.3%. This study shows that a single exponent model generally fits well with the decrement in power output over time in professional cyclists. Modified model parameters may contribute to improving predictability of the model.  相似文献   

5.
BackgroundCore affect is defined as the most general affective construct consciously accessible that is experienced constantly. It can be experienced as free-floating (mood) or related to prototypical emotional episodes. The aim of this study was to examine the influence of pleasant and unpleasant core affect on cyclo-ergometer endurance performance. Specifically, we considered the influence of pleasant and unpleasant core affect on performance outcomes (i.e., time to task completion) and rate of perceived exertion (RPE; Borg Scale, category ratio-10) collected during the task.MethodsThirty-one participants aged 20–28 years were recruited. Core affect was randomly elicited by 2 sets of pleasant and unpleasant pictures chosen from the international affective picture system. Pictures were displayed to participants during a cyclo-ergometer performance in 2 days in a counterbalanced order. RPE was collected every minute to detect volunteers’ exhaustion.ResultsThe study sample was split into 2 groups. Group 1 comprised participants who performed better with pleasant core affect, whereas Group 2 included participants who performed better with unpleasant core affect. Mixed between-within subjects analysis of variance revealed a significant 2 (group) × 2 (condition) × 5 (isotime) interaction (p = 0.002, ηp2 = 0.158). Post hoc comparisons showed that participants who obtained better performance with pleasant core affect (pleasant pictures; Group 1) reported lower RPE values at 75% of time to exhaustion in a pleasant core affect condition compared to an unpleasant core affect condition. On the other hand, participants who obtained better performance with unpleasant core affect (unpleasant pictures; Group 2) reported lower RPE values at 75% and 100% of time to exhaustion in an unpleasant core affect condition.ConclusionFindings suggest differential effects of pleasant and unpleasant core affect on performance. Moreover, core affect was found to influence perceived exertion and performance according to participants’ preferences for pleasant or unpleasant core affect.  相似文献   

6.
7.
Abstract

The aim of this study was to investigate the effects of caffeine supplementation on peak anaerobic power output (Wmax). Using a counterbalanced, randomised, double-blind, placebo-controlled design, 14 well-trained men completed three trials of a protocol consisting of a series of 6-s cycle ergometer sprints, separated by 5-min passive recovery periods. Sprints were performed at progressively increasing torque factors to determine the peak power/torque relationship and Wmax. Apart from Trial 1 (familiarisation), participants ingested a capsule containing 5 mg·kg?1 of caffeine or placebo, one hour before each trial. The effects of caffeine on blood lactate were investigated using capillary samples taken after each sprint. The torque factor which produced Wmax was not significantly different (p ≥ 0.05) between the caffeine (1.15 ± 0.08 N·m·kg?1) and placebo (1.13 ± 0.10 N·m·kg?1) trials. There was, however, a significant effect (p < 0.05) of supplementation on Wmax, with caffeine producing a higher value (1885 ± 303 W) than placebo (1835 ± 290 W). Analysis of the blood lactate data revealed a significant (p < 0.05) torque factor × supplement interaction with values being significantly higher from the sixth sprint (torque factor 1.0 N·m·kg?1) onwards following caffeine supplementation. The results of this study confirm previous reports that caffeine supplementation significantly increases blood lactate and Wmax. These findings may explain why the majority of previous studies, which have used fixed-torque factors of around 0.75 N·m·kg?1 and thereby failing to elicit Wmax, have failed to find an effect of caffeine on sprinting performance.  相似文献   

8.
Myokines may play a role in the health benefits of regular physical activity. Secreted protein acidic rich in cysteine (SPARC) is a pleiotropic myokine that has been shown to be released into the bloodstream by skeletal muscle in response to aerobic exercise. As there is evidence suggesting that SPARC release may be linked to glycogen breakdown and activation of 5’ adenosine monophosphate-activated protein kinase, we hypothesised that brief supramaximal exercise may also be associated with increased serum SPARC levels. In the present study, 10 participants (3 women; mean?±?SD age: 21?±?3 y, body mass index (BMI): 22?±?3?kg?m?2, and V˙O2max: 39?±?6?mL?kg?1?min?1) performed an acute bout of supramaximal cycle exercise (20-s Wingate sprint against 7.5% of body mass, with a 1-min warm-up and a 3-min cool-down consisting of unloaded cycling). Serum SPARC levels were determined pre-exercise as well as 0, 15, and 60?min post-exercise and corrected for plasma volume change. To determine whether regular exercise affected the acute SPARC response, participants repeated the acute exercise protocol three times per week for four weeks, and serum SPARC response to supramaximal exercise was reassessed after this period. Acute supramaximal exercise significantly decreased plasma volume (?10%; p?<?.001), but was not associated with a significant change in serum SPARC levels at either the pre-training or post-training testing sessions. In conclusion, in contrast to aerobic exercise, a single brief supramaximal cycle sprint is not associated with an increase in serum SPARC levels, suggesting that SPARC release is not related to skeletal muscle glycogen breakdown.  相似文献   

9.
This study compares test-retest reliability and peak exercise responses from ramp-incremented (RAMP) and maximal perceptually-regulated (PRETmax) exercise tests during arm crank exercise in individuals reliant on manual wheelchair propulsion (MWP). Ten untrained participants completed four trials over 2-weeks (two RAMP (0–40 W + 5–10 W · min?1) trials and two PRETmax. PRETmax consisted of five, 2-min stages performed at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20). Participants freely changed the power output to match the required RPE. Gas exchange variables, heart rate, power output, RPE and affect were determined throughout trials. The V?O2peak from RAMP (14.8 ± 5.5 ml · kg?1 · min?1) and PRETmax (13.9 ± 5.2 ml · kg?1 · min?1) trials were not different (P = 0.08). Measurement error was 1.7 and 2.2 ml · kg?1 · min?1 and coefficient of variation 5.9% and 8.1% for measuring V?O2peak from RAMP and PRETmax, respectively. Affect was more positive at RPE 13 (P = 0.02), 15 (P = 0.01) and 17 (P = 0.01) during PRETmax. Findings suggest that PRETmax can be used to measure V?O2peak in participants reliant on MWP and leads to a more positive affective response compared to RAMP.  相似文献   

10.
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2?±?7.1 years; body mass index: 23.0?±?1.1?kg·m?2; V˙O2max: 55.4?±?4.0 mlO2·kg?1·min?1) were divided into an exercise (EG?=?13) and control group (CG?=?12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14?km·h?1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p?<?.05) at all tested running speeds (?6.4?±?6.5% at 8?km·h?1; ?3.5?±?5.3% at 10?km·h?1; ?4.0?±?5.5% at 12?km·h?1; ?3.2?±?4.5% at 14?km·h?1), contact time (tc) increased at 8, 10 and 12?km·h?1 by mean +4.4?±?0.1% and ta decreased by ?25.6?±?0.1% at 8?km·h?1 (p?<?.05). Further, inverse relationships between changes in Cr and MMP at 10 (p?=?.013; r?=??0.67) and 12?km·h?1 (p?<?.001; r?=??0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.  相似文献   

11.
The aim of this study was to examine the impact of contextual factors on relative locomotor and metabolic power distances during professional female soccer matches. Twenty-eight players (forwards, n?=?4; midfielders, n?=?12; defenders, n?=?12) that competed in a 90-min home and away match (regular season only). The generalised estimating equations (GEE) was used to evaluate relative locomotor and metabolic power distances for three contextual factors: location (home vs. away), type of turf (natural vs. artificial), and match outcome (win, loss and draw). No differences were observed for home vs. away matches. Moderate-intensity running (20.0?±?1.0?m?min?1 and 16.4?±?0.9?m?min?1), high-intensity running (8.6?±?0.4?m?min?1 and 7.3?±?0.4?m?min?1) and high-metabolic power (16.3?±?0.5?m?min?1 and 14.4?±?0.5?m?min?1) distances were elevated on artificial turf compared to natural grass, respectively. Relative sprint distance was greater during losses compared with draws (4.3?±?0.4?m?min?1 and 3.4?±?0.3?m?min?1). Overall physical demands of professional women’s soccer were not impacted by match location. However, the elevation of moderate and high-intensity demands while playing on artificial turf may have implications on match preparations as well as recovery strategies.  相似文献   

12.
Attenuated performance during intense exercise with limited endogenous carbohydrate (CHO) is well documented. Therefore, this study examined whether caffeine (CAF) mouth rinsing would augment performance during repeated sprint cycling in participants with reduced endogenous CHO. Eight recreationally active males (aged 23?±?2?yr, body mass 84?±?4?kg, stature 178?±?7?cm) participated in this randomized, single-blind, repeated-measures crossover investigation. Following familiarization, participants attended two separate evening glycogen depletion sessions. The following morning, participants completed five, 6?s sprints on a cycle ergometer (separated by 24?s active recovery), with mouth rinsing either (1) a placebo solution or (2) a 2% CAF solution. During a fifth visit, participants completed the sprints without prior glycogen depletion. Repeated-measures ANOVA identified significant main effect of condition (CAF, placebo, and control [P?P?P?P?P?P?相似文献   

13.
The aim of the present study was to examine the effect of ingesting 75?g of glucose 45?min before the start of a graded exercise test to exhaustion on the determination of the intensity that elicits maximal fat oxidation (Fatmax). Eleven moderately trained individuals ( V?O2max: 58.9±1.0?ml?·?kg?1?·?min?1; mean±s ), who had fasted overnight, performed two graded exercise tests to exhaustion, one 45?min after ingesting a placebo drink and one 45?min after ingesting 75?g of carbohydrate in the form of glucose. The tests started at 95?W and the workload was increased by 35?W every 3?min. Gas exchange measures and heart rate were recorded throughout exercise. Fat oxidation rates were calculated using stoichiometric equations. Blood samples were collected at rest and at the end of each stage of the test. Maximal fat oxidation rates decreased from 0.46±0.06 to 0.33±0.06?g?·?min?1 when carbohydrate was ingested before the start of exercise (P?<0.01). There was also a decrease in the intensity which elicited maximal fat oxidation (60.1±1.9% vs 52.0±3.4% V?O2max) after carbohydrate ingestion (P?<0.05). Maximal power output was higher in the carbohydrate than in the placebo trial (346±12 vs 332±12?W) (P?<0.05). In conclusion, the ingestion of 75?g of carbohydrate 45?min before the onset of exercise decreased Fatmax by 14%, while the maximal rate of fat oxidation decreased by 28%.  相似文献   

14.
Abstract

The aim of this study was to determine sprint profiles of professional female soccer players and evaluate how various speed thresholds impact those outcomes. Seventy-one professional players competing in full matches were assessed repeatedly during 12 regular season matches using a Global Positioning System (GPS). Locomotion ≥18 km · h?1 was defined as sprinting and each event was classified into: Zone 1: 18.0–20.9 km· h?1; Zone 2: 21.0–22.9 km · h?1; Zone 3: 23.0–24.9 km · h?1 and Zone 4: >25 km · h?1. Outcomes included: duration (s), distance (m), maximum speed (km · h?1), duration since previous sprint (min) and proportion of total sprint distance. In total 5,019 events were analysed from 139 player-matches. Mean sprint duration, distance, maximum speed and time between sprints were 2.3 ± 1.5 s, 15.1 ± 9.4 m, 21.8 ± 2.3 km· h?1, and 2.5 ± 2.5 min, respectively. Mean sprint distances were 657 ± 157, 447 ± 185, and 545 ± 217 m for forwards, midfielders and defenders, respectively (P ≤ 0.046). Midfielders had shorter sprint duration (P = 0.023), distance (P ≤ 0.003) and maximum speed (P < 0.001), whereas forwards performed more sprints per match (43 ± 10) than midfielders (31 ± 11) and defenders (36 ± 12) (P ≤ 0.016). Forty-five percent, 29%, 15%, and 11% of sprints occurred in sprint Zones 1, 2, 3 and 4, respectively. This group of professional female soccer players covered 5.3 ± 2.0% of total distance ≥18 km · h?1 with positional differences and percent decrements distinct from other previously identified elite players. These data should guide the development of high intensity and sprint thresholds for elite-standard female soccer players.  相似文献   

15.
The aim of this study was to determine the effects of caffeine ingestion on a ‘preloaded’ protocol that involved cycling for 2?min at a constant rate of 100% maximal power output immediately followed by a 1-min ‘all-out’ effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5?mg?·?kg?1) or placebo in a randomized, double-blind procedure. All tests were conducted on the participants' own bicycles using a Kingcycle? test rig. Ratings of perceived exertion (RPE; 6–20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120?s during the constant rate phase of the preloaded test (P?<0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794±164 vs 750±163?W; P?=?0.05). Blood lactate concentration 4, 5 and 6?min after exercise was also significantly higher by approximately 1?mmol?·?l?1 in the caffeine trial (P?<0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.  相似文献   

16.
Scientific information about the effects of caffeine intake on combat sport performance is scarce and controversial. The aim of this study was to investigate the effectiveness of caffeine to improve Brazilian Jiu-jitsu (BJJ)-specific muscular performance. Fourteen male and elite BJJ athletes (29.2?±?3.3?years; 71.3?±?9.1?kg) participated in a randomized double-blind, placebo-controlled and crossover experiment. In two different sessions, BJJ athletes ingested 3?mg?kg?1 of caffeine or a placebo. After 60?min, they performed a handgrip maximal force test, a countermovement jump, a maximal static lift test and bench-press tests consisting of one-repetition maximum, power-load, and repetitions to failure. In comparison to the placebo, the ingestion of the caffeine increased: hand grip force in both hands (50.9?±?2.9 vs. 53.3?±?3.1?kg; respectively p?p?=?.02), and time recorded in the maximal static lift test (54.4?±?13.4 vs. 59.2?±?11.9?s; p?p?=?.02), maximal power obtained during the power-load test (750.5?±?154.7 vs. 826.9?±?163.7?W; p?p?=?.04). In conclusion, the pre-exercise ingestion of 3?mg?kg?1 of caffeine increased dynamic and isometric muscular force, power, and endurance strength in elite BJJ athletes. Thus, caffeine might be an effective ergogenic aid to improve physical performance in BJJ.  相似文献   

17.
This investigation reports the effects of chewing caffeinated gum on race performance with trained cyclists. Twenty competitive cyclists completed two 30-km time trials that included a maximal effort 0.2-km sprint each 10-km. Caffeine (~3–4 mg · kg?1) or placebo was administered double-blind via chewing gum at the 10-km point following completion of the first sprint. Measures of power output, oxygen uptake, heart rate, lactate and perceived exertion were taken at set intervals during the time trial. Results indicated no substantial differences in any measured variables between caffeine and placebo conditions during the first 20-km of the time trial. Caffeine gum did however lead to substantial enhancements (mean ± 90% confidence limits (CLs)) in mean power during the final 10-km (3.8% ± 2.3%), and sprint power at 30-km (4.0% ± 3.6%). The increases in performance over the final 10-km were associated with small increases in heart rate and blood lactate (effect size of 0.24 and 0.28, respectively). There were large inter-individual variations in the response to caffeine, and apparent gender related differences in sprint performance. Chewing caffeine gum improves mean and sprint performance power in the final 10-km of a 30-km time trial in male and female cyclists most likely through an increase in nervous system activation.  相似文献   

18.
Abstract

In this study, video and force analysis techniques were used to distinguish between dragon boat paddlers of different ability. Six elite paddlers (three males, three females) and six sub-elite paddlers (two males, four females) were compared during high-intensity paddling (80–90 strokes · min?1). Video filming was conducted for two-dimensional kinematic analysis and an instrumented paddle was used to collect force data. Paddling efficiency, paddle force characteristics, and paddler kinematic variables were measured. Elite paddlers achieved higher paddling efficiency than sub-elite paddlers (elite: 76 ± 4%; sub-elite: 67 ± 10%; P = 0.080). Elite paddlers also showed higher peak force (elite: 16.3 ± 4.8 N · kg?2/3; sub-elite: 11.4 ± 2.6 N · kg?2/3; P = 0.052), average force (elite: 7.9 ± 2.8 N · kg?2/3; sub-elite: 5.5 ± 1.4 N · kg?2/3; P = 0.084), and impulse (elite: 3.0 ± 0.9 (N · s) · kg?2/3; sub-elite: 1.9 ± 0.4 (N · s) · kg?2/3; P = 0.026) than sub-elite paddlers, but these three results should be viewed with caution due to the small sample size and the unequal number of males and females in the two groups. Superior technique and greater strength enable the elite paddlers to achieve higher paddling efficiency. Paddlers use different joint movement patterns to develop propulsion, which are reflected in variations in the force–time curve.  相似文献   

19.
We tested the hypothesis that work-matched supramaximal intermittent warm-up improves final-sprint power output to a greater degree than submaximal constant-intensity warm-up during the last 30?s of a 120-s supramaximal exercise simulating the final sprint during sports events lasting approximately 2?min. Ten male middle-distance runners performed a 120-s supramaximal cycling exercise consisting of 90?s of constant-workload cycling at a workload corresponding to 110% maximal oxygen uptake (VO2max) followed by 30?s of maximal-effort cycling. This exercise was preceded by 1) no warm-up (Control), 2) a constant-workload cycling warm-up at a workload of 60%VO2max for 6?min and 40?s, or 3) a supramaximal intermittent cycling warm-up for 6?min and 40?s consisting of 5 sets of 65?s of cycling at a workload of 46%VO2max?+?15?s of supramaximal cycling at a workload of 120%VO2max. By design, total work was matched between the two warm-up conditions. Supramaximal intermittent and submaximal constant-workload warm-ups similarly increased 5-s peak (590?±?191 vs. 604?±?215W, P?=?0.41) and 30-s mean (495?±?137 vs. 503?±?154W, P?=?0.48) power output during the final 30-s maximal-effort cycling as compared to the no warm-up condition (5-s peak: 471?±?165W; 30-s mean: 398?±?117W). VO2 during the 120-s supramaximal cycling was similarly increased by the two warm-ups as compared to no-warm up (P?≤?0.05). These findings show that work-matched supramaximal intermittent and submaximal constant-workload warm-ups improve final sprint (~30?s) performance to similar extents during the late stage of a 120-s supramaximal exercise bout.  相似文献   

20.
The aim of the study was to compare the effect of resistance training (RT) frequencies of five times (RT5), thrice- (RT3) or twice- (RT2) weekly in muscle strength and hypertrophy in young men. Were used a within-subjects design in which 20 participants had one leg randomly assigned to RT5 and the other to RT3 or to RT2. 1?RM and muscle cross-sectional area (CSA) were assessed at baseline, after four (W4) and eight (W8) RT weeks. RT5 resulted in greater total training volume (TTV) than RT3 and RT2 (P?=?.001). 1?RM increased similarly between protocols at W4 (RT5: 55?±?9?Kg, effect size (ES): 1.18; RT3: 51?±?11?Kg, ES: 0.80; RT2: 54?±?7?Kg, ES: 1.13; P?P?2, ES: 0.54; RT3: 22.0?±?4.6?cm2, ES: 0.19; RT2: ES: 0.25; 23.8?±?3.8?cm2; P?2; ES: 0.69; RT3: 23.6?±?4.2?cm2, ES: 0.58; RT2: 25.5?±?3.7?cm2; ES: 0.70; P?2; RT3: 21.2?±?4.0?cm2; RT2: 22.9?±?3.8?cm2). Performing RT5, RT3 and RT2 a week result in similar muscle strength increase and hypertrophy, despite higher TTV for RT5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号