首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.  相似文献   

2.
This study aimed to identify the continuous ground reaction force (GRF) features which contribute to higher levels of block phase performance. Twenty-three sprint-trained athletes completed starts from their preferred settings during which GRFs were recorded separately under each block. Continuous features of the magnitude and direction of the resultant GRF signals which explained 90% of the variation between the sprinters were identified. Each sprinter’s coefficient score for these continuous features was then input to a linear regression model to predict block phase performance (normalised external power). Four significant (p < 0.05) predictor features associated with GRF magnitude were identified; there were none associated with GRF direction. A feature associated with greater rear block GRF magnitudes from the onset of the push was the most important predictor (β = 1.185), followed by greater front block GRF magnitudes for the final three-quarters of the push (β = 0.791). Features which included a later rear block exit (β = 0.254) and greater front leg GRF magnitudes during the mid-push phase (β = 0.224) were also significant predictors. Sprint practitioners are encouraged, where possible, to consider the continuous magnitude of the GRFs produced throughout the block phase in addition to selected discrete values.  相似文献   

3.
The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many “very likely” to “almost certain” relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.  相似文献   

4.
ABSTRACT

The aims of this study were (a) to describe the kinematics underlying the phenomenon of the knee of the swing leg passing medially in front of the athlete during the single push (SP) phase of the block sprint start, and (b) to determine the relationships between block phase pelvis range of motion (RoM), 1st step width and block phase performance. Three-dimensional kinematic data (250 Hz) were collected from eleven competitive sprinters (100 m PB: 11.17 ± 0.41) performing maximal effort block starts. The joint angles of the rear hip with respect to the pelvis and the pelvis segment angles with respect to the laboratory coordinate system were calculated during the block start phase to the end of the 1st stance. A combination of pelvis list and rotation (not hip adduction) was coupled with the thigh of the swing leg moving medially during the SP phase. A very high positive correlation was found between pelvic list RoM and 1st step width (r = 0.799, p = 0.003). No other significant correlations were found. Attempting to reduce pelvic RoM or changing frontal and transverse plane hip joint angles to minimise medial thigh motion is unlikely to lead to an improvement to performance.  相似文献   

5.
The aim of this study was to examine the effects of muscle-tendon length on joint moment and power during maximal sprint starts. Nine male sprinters performed maximal sprint starts from the blocks that were adjusted either to 40 degrees or 65 degrees to the horizontal. Ground reaction forces were recorded at 833 Hz using a force platform and kinematic data were recorded at 200 Hz with a film camera. Joint moments and powers were analysed using kinematic and kinetic data. Muscle - tendon lengths of the medial gastrocnemius, soleus, vastus medialis, rectus femoris and biceps femoris were calculated from the set position to the end of the first single leg contact. The results indicated that block velocity (the horizontal velocity of centre of mass at the end of the block phase) was greater (P < 0.01) in the 40 degrees than in the 65 degrees block angle condition (3.39 +/- 0.23 vs. 3.30 +/- 0.21 m . s(-1)). Similarly, the initial lengths of the gastrocnemius and soleus of the front leg in the block at the beginning of force production until half way through the block phase were longer (P < 0.001) in the 40 degrees than in the 65 degrees block angle condition. The initial length and the length in the middle of the block phase were also longer in the 40 degrees than in the 65 degrees block angle condition both for both the gastrocnemius (P < 0.01) and soleus (P < 0.01-0.05) of the rear leg. In contrast, the initial lengths of the rectus femoris and vastus medialis of the front leg were longer (P < 0.05) in the 65 degrees than in the 40 degrees block angle condition. All differences gradually disappeared during the later block phase. The peak ankle joint moment (P < 0.01) and power (P < 0.05) during the block phase were greater in the 40 degrees than in the 65 degrees block angle condition for the rear leg. The peak ankle joint moment during the block phase was greater (P < 0.05) in the 40 degrees block angle for the front leg, whereas the peak knee joint moment of the rear leg was greater (P < 0.01) in the 65 degrees block angle condition. The results suggest that the longer initial muscle-tendon lengths of the gastrocnemius and soleus in the block phase at the beginning of force production contribute to the greater peak ankle joint moment and power and consequently the greater block velocity during the sprint start.  相似文献   

6.
Abstract

Cerebral palsy is known to generally limit range of motion and force producing capability during movement. It also limits sprint performance, but the exact mechanisms underpinning this are not well known. One elite male T36 multiple-Paralympic sprint medallist (T36) and 16 well-trained able-bodied (AB) sprinters each performed 5–6 maximal sprints from starting blocks. Whole-body kinematics (250 Hz) in the block phase and first two steps, and synchronised external forces (1,000 Hz) in the first stance phase after block exit were combined to quantify lower limb joint kinetics. Sprint performance (normalised average horizontal external power in the first stance after block exit) was lower in T36 compared to AB. T36 had lower extensor range of motion and peak extensor angular velocity at all lower limb joints in the first stance after block exit. Positive work produced at the knee and hip joints in the first stance was lower in T36 than AB, and the ratio of positive:negative ankle work produced was lower in T36 than AB. These novel results directly demonstrate the manner in which cerebral palsy limits performance in a competition-specific sprint acceleration movement, thereby improving understanding of the factors that may limit performance in elite sprinters with cerebral palsy.  相似文献   

7.
Abstract

The aim of this study was to determine if critical parameters for elite performance could be identified among a population of female shot putters. The performance of seven of the top women shot putters competing at the 2002 USA National Championships was examined. Video data were captured using two Panasonic 60 Hz cameras and the best throws of each athlete were digitized and analyzed using a Peak Motus three‐dimensional motion analysis system. Thirty variables were examined for their effect on the distance of the throw. Correlation analysis indicated that measured distance was positively correlated with release speed (r = 0.97, p < 0.0003) and shoulder‐hip separation (r = 0.72, p < 0.06) and negatively correlated with release angle (r = ‐0.74, p < 0.056), rear knee angle at rear foot touchdown (r = ‐0.93, p < 0.003) and rear knee angle at release (r = ‐0.76, p < 0.047). Greater knee flexion angle at both rear foot touch down and release along with a neutral shoulder‐hip angle at release were identified as the most critical parameters for success among this sample of elite women shot putters. The unique observation about the knee positions at specific events should assist in new training and coaching developments.  相似文献   

8.
Abstract

Fifteen highly skilled sprinters were filmed while running at maximum velocity. The results were digitized and computer processed with interest focused on the muscle moments generated about the hip, knee, and ankle of the ground leg. Muscle activity about the hip consisted of extensor (concentric) dominance from foot descent, through foot strike, and into mid-support. Muscle dominance shifted to the hip flexors (eccentric) during mid-support and continued through takeoff. Muscle dominance at the knee demonstrated a pattern of flexor (eccentric, then concentric) dominance from foot descent through foot strike and into mid-support. Knee extensors (eccentric, then concentric) then achieved dominance through takeoff. During the later stages of takeoff, the dominance decreased or reversed briefly to flexor (eccentric) activity prior to a period of minimal activity following the toe-off position. From a period of minimal activity prior and subsequent to ground contact, the plantar flexors (eccentric, then concentric) of the foot were dominant throughout the ground phase. Qualitatively, the unexpected knee flexor dominance during foot strike was generated to limit the braking action created during this portion of ground contact. The unanticipated hip flexor dominance during takeoff served to rotate the upper body forward and into the approaching air phase. In addition, both of these actions allowed efficient use of the two-joint muscles of the leg during the critical phases of ground contact. Finally, the minimizing or reversing of the knee extensor dominance during the later stages of takeoff served to protect the joint from injury. Quantitatively, the magnitude of hip extensor/knee flexor activity during foot strike was significantly related (r = .70, p = .01) to the prior occurrences of related leg injury in the subjects.  相似文献   

9.
A proficient serve is critical to successful tennis performance, and consequently coaches and players devote considerable time refining this stroke. In so doing, a wide variety of interventions are used or trialled, generally with very little empirical support. This study examined the efficacy of a commonly used service intervention, where players focus on exaggerating their finish (arabesque) position to promote specific changes in lower limb and trunk kinematics. The kinematics of eight high-performance junior players hitting flat serves were compared to the acute changes in kinematics elicited by the arabesque follow through position on serves using a 10-camera VICON MX motion analysis system. The significantly greater front (landing leg) hip flexion (p < 0.05) and forward trunk flexion (p < 0.05) confirmed the more exaggerated arabesque landing position following the arabesque instruction. The arabesque instruction resulted in increased frontal plane trunk range of motion and peak angular velocity in the forward swing, and increased leg drive during the drive phase. Practically, the results support the use of the arabesque instruction, effectively promoting the desired acute changes in trunk kinematics (i.e. increased frontal plane trunk rotation angular velocity) and leg drive (i.e. increased back knee extension angular velocity and front/back vertical hip velocity).  相似文献   

10.
Abstract

This study analysed the effect of imposing a pause between the eccentric and concentric phases on the biological within-subject variation of velocity- and power–load isoinertial assessments. Seventeen resistance-trained athletes undertook a progressive loading test in the bench press (BP) and squat (SQ) exercises. Two trials at each load up to the one-repetition maximum (1RM) were performed using 2 techniques executed in random order: with (stop) and without (standard) a 2-s pause between the eccentric and concentric phases of each repetition. The stop technique resulted in a significantly lower coefficient of variation for the whole load–velocity relationship compared to the standard one, in both BP (2.9% vs. 4.1%; P = 0.02) and SQ (2.9% vs. 3.9%; P = 0.01). Test–retest intraclass correlation coefficients (ICCs) were r = 0.61–0.98 for the standard and r = 0.76–0.98 for the stop technique. Bland–Altman analysis showed that the error associated with the standard technique was 37.9% (BP) and 57.5% higher (SQ) than that associated with the stop technique. The biological within-subject variation is significantly reduced when a pause is imposed between the eccentric and concentric phases. Other relevant variables associated to the load–velocity and load–power relationships such as the contribution of the propulsive phase and the load that maximises power output remained basically unchanged.  相似文献   

11.
Abstract

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.  相似文献   

12.
Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9°; 11 km/h). Performance was correlated to cycle length (r = 0.77; P < 0.05), relative leg swing (r = 0.71), and gliding time (r = 0.74), hip flexion range of motion (ROM) during swing (r = 0.73) and knee extension ROM during gliding (r = 0.71). Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r = ? 0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.  相似文献   

13.
For fencing, speed of the lunge is considered critical to success. The aim of this study is to investigate determinants of lunge speed based on biomechanics. Ground reaction force (GRF) and three-dimensional kinematic data were collected from 7 elite fencers and 12 intermediate-level fencers performing maximum-effort lunges. The results showed that elite fencers acquired a higher horizontal peak velocity of the centre of gravity (HPV) and concomitantly a higher horizontal peak GRF exerted by rear leg (PGRF) than intermediate-level fencers (P?P?P?P?≤?.05). Our findings suggest that training aimed at enhancing strength and power of rear knee extensors is important for fencers to improve speed of the lunge. Also, increasing the extension of rear knee during the lunge, at the same time decreasing the flexion of the forward knee before extension are positive for lunge performance.  相似文献   

14.
Undulatory underwater swimming (UUS) is one of the major skills contributing to performance in competitive swimming. UUS has two phases– the upbeat is performed by hip extension and knee flexion, and the downbeat is the converse action. The purpose of this study was to determine which kinematic variables of the upbeat and downbeat are associated with prone UUS performance in an elite sample. Ten elite participants were filmed performing three prone 20 m UUS trials. Seven landmarks were manually digitised to calculate eighteen kinematic variables, plus the performance variable– horizontal centre of mass velocity (VCOM). Mean VCOM was significantly correlated with body wave velocity (upbeat r = 0.81, downbeat r = 0.72), vertical toe velocity (upbeat r = 0.71, downbeat r = 0.86), phase duration (upbeat r = ?0.79), peak hip angular velocity (upbeat r = 0.73) and mean knee angular velocity (upbeat r = ?0.63), all significant at P < 0.05. A multiple stepwise regression model explained 78% of variance in mean VCOM. Peak toe velocity explained 72% of the variance, and mean body wave velocity explained an additional 6%. Elite swimmers should strive for a high peak toe velocity and a fast caudal transfer of momentum to optimise underwater undulatory swimming performance.  相似文献   

15.
Abstract

The aim of this study was to investigate the acute effects of a vibration-assisted static stretching intervention on enhancing split range of motion in gymnasts matched on initial range of motion. Twenty-two female artistic gymnasts (mean age 13.8 years, s=2.3) matched for age (±6 months) and competitive level were randomly assigned to a static stretching intervention with or without simultaneous vibration. The test consisted of adopting a forward split position with the rear leg bent to 90° and held vertically against a matted block while the pelvis remained perpendicular to the lines of the two legs. The gymnast was instructed to descend into the lowest split position of her comfortable pain tolerance. Positions were videotaped and digitized creating an angle between the split legs. The stretching intervention consisted of a forward split position with emphasis on the front leg hamstring muscle group, followed by a forward lunge position with emphasis on the rear leg quadriceps muscle group. In each position, four sets of stretches were completed each of 10 s duration with 5 s of rest between sets. The experimental group performed stretches with the vibration device turned on while the control group performed the same stretches with the vibration device turned off. A pre-test was performed to obtain baseline scores with the post-test following immediately after the vibration or control stretching intervention. Difference scores were calculated between the pre-test and post-test for each gymnast, and compared between groups using independent t-tests. Results showed significant post-test differences between the vibration and non-vibration groups (mean difference 12.2±5.2° vibration vs. 7.8±3.5° non-vibration, P=0.030) in the non-dominant limb, but no significant differences in the dominant limb (mean difference 10.2±4.3° vibration vs. 7.9±6.1° non-vibration, P=0.32). Vibration-assisted static stretching may provide a greater stimulus for range of motion improvements in limbs that have a lower initial level of flexibility.  相似文献   

16.
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.  相似文献   

17.
Scarce research has examined the effects of carbohydrate composition on running stride characteristics. On two occasions, 14 males and 6 females completed a 120-min sub-maximal run followed by a 4-mile time trial. Participants consumed glucose (GLU) or glucose–fructose (GLU–FRU) beverages supplying 1.3 g/min carbohydrate. Substrate use, psychological affect [Feeling Scale (FS)], and stride characteristics (stride frequency, stride length, and contact time) were assessed. Effects were expressed as Cohen’s d (90% confidence limits [90% CL]). CLs for stride frequency differences at 53 min (90% CL = 0.04–0.21) and 113 min (90% CL = 0.02–0.24) did not cover 0, indicating a positive effect of GLU–FRU. However, effect sizes were small (d = 0.13) and likely-to-very-likely trivial. Energy expenditure differences at sub-maximal end were very likely trivial (d = 0.08; 90% CL = 0.00–0.17), while FS ratings were possibly higher for GLU–FRU at 50 (d = 0.19; 90% CL = ?0.10–0.48) and 110 min (d = 0.16; 90% CL = ?0.13–0.45). During the time trial, stride length was possibly higher with GLU–FRU (d = 0.13; 90% CL = ?0.08–0.33). Glucose–fructose co-ingestion has no significant effect on stride characteristics during constant-velocity running but may result in slightly higher stride length during self-paced running.  相似文献   

18.
Abstract

Hip adduction strength is important for kicking and acceleration in soccer players. Changes in hip adduction strength may therefore have an effect on soccer players’ athletic performance. The purpose of this study was to investigate the acute and sub-acute effects of a kicking drill session on hip strength, concerning isometric hip adduction, abduction and flexion torque of the kicking leg and the supporting leg. Ten injury-free male elite soccer players, mean ± s age of 15.8 ± 0.4 years participated. All players underwent a specific 20 min kicking drill session, comprising 45 kicks. The players were tested the day before, 15 min after and 24 h after the kicking drill session by a blinded tester using a reliable test procedure. The isometric hip-action and leg-order were randomized. For the kicking leg, hip adduction torque increased from 2.45 (2.19–2.65) Nm ? kg?1, median (25th–75th percentiles), at pre-kicking to 2.65 (2.55–2.81) Nm ? kg?1 (P = 0.024) 24 h post-kicking. This may have implications for the soccer player’s ability to maximally activate the hip adductors during kicking and acceleration, and thereby improve performance the day after a kicking drill session.  相似文献   

19.
This study analysed the modulation of jump performance, vertical stiffness as well as joint and intralimb coordination throughout a 30-s vertical jump test. Twenty male athletes performed the test on a force plate while undergoing kinematic analysis. Jump height, power output, ground contact time, vertical stiffness, maximum knee and hip flexion angles, and coordination by continuous relative phase (CRP) were analysed. Analysis of variance was used to compare variables within deciles, and t-tests were used to compare CRP data between the initial and final jumps. Results showed reduction in jump height, power output, and vertical stiffness, with an increase in contact time found during the test. Maximum knee and hip flexion angles declined, but hip angle decreased earlier (10–20% of the test) than knee angle (90–100%). No changes were observed in CRP for thigh–leg coupling when comparing initial and final jumps, but the trunk–thigh coupling was more in-phase near the end of the test. We conclude that fatigue causes reduction in jump performance, as well as changes in stiffness and joint angles. Furthermore, changes in intralimb coordination appear at the last 10% of the test, suggesting a neuromotor mechanism to counterbalance the loss of muscle strength.  相似文献   

20.
Abstract

The maximal step length test has been proposed to evaluate the risk of falls among the elderly, although the test is confusing and prone to errors due to two types of test methods. The maximal double-step length test may be used to evaluate both leg function and the functional difference between the left and right legs, but its measurement and evaluation methods have not been studied extensively. The aims of the present study were to compare the maximal single- and double-step length tests, and to highlight differences between the sexes and between the dominant and non-dominant legs. Fifty healthy adults free from lower-limb disorders conducted the above step tests twice, once with the dominant and once with the non-dominant leg. The former test requires individuals to return the stepping leg to the original position or to draw the other leg to the step leg after stepping out maximally with either leg from a standing posture while maintaining body stability with the supporting leg. The latter test requires individuals to step forward with either leg maximally, after similarly stepping with the other leg and to draw the first stepping leg to the second stepping leg. The above tests are defined as the single- and double-step length test, respectively. Step lengths were measured in both tests, and these values were used for analysis. Correlations among step length tests conducted with the dominant and non-dominant legs were very high (r=0.82–0.97). Significant sex differences were found in all step length tests, and males were superior to females. No significant difference between legs was found in any test. In summary, the relationship between the maximal single- and double-step length tests was very high and step lengths showed a significant sex difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号