首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of running with or without shoes on injury prevention have been extensively studied, and several investigations have assessed biomechanical differences between them. However, findings are not consensual and further insights on biomechanical load associated with differently shod or barefoot conditions may be needed. This study aimed to observe if habitually shod marathon runners show acute alterations when running barefoot or with minimalist shoes, and to determine whether the running kinematical adaptations of wearing minimalist shoes were similar to barefoot running. Twelve male marathon runners ran on the treadmill at their average marathon pace in different footwear conditions: habitual running shoes, minimalist shoes, and barefoot. High-resolution infrared cameras and visual 3D software were used to assess kinematic data. The following parameters were studied: foot strike angle, cycle time, stance time, normalized stride length, hip, knee, and ankle angular position at initial contact, and their respective range-of-motion (ROM) during stance phase. Contrary to the expectations, it was found that highly trained habitually shod elite marathon runners changed their lower limb kinematic pattern both when running barefoot or wearing minimalist shoes. Minimalist shoes showed a trend towards intermediate biomechanical effects between running with and without shoes.  相似文献   

2.
The aim of this study was to observe changes in the kinematics and muscle activities when barefoot running was initially adopted by six habitually shod, recreational rearfoot striking runners. Participants ran on a treadmill shod for 5 min, completed 3 × 10-min intervals of barefoot running and then completed a final minute of shod running at a self-selected pace. Dependent variables (speed, joint angles at foot-contact, joint range of motion (ROM), mean and peak electromyography (EMG) activity) were compared across conditions using repeated measures ANOVAs. Anterior pelvic tilt and hip flexion significantly decreased during barefoot conditions at foot contact. The ROM for the trunk, pelvis, knee and ankle angles decreased during the barefoot conditions. Mean EMG activity was reduced for biceps femoris, gastrocnemius lateralis and tibialis anterior during barefoot running. The peak activity across the running cycle decreased in biceps femoris, vastus medialis, gastrocnemius medialis and tibialis anterior during barefoot running. During barefoot running, tibialis anterior activity significantly decreased during the pre-activation and initial contact phases; gastrocnemius lateralis and medialis activity significantly decreased during the push-off phase. Barefoot running caused immediate biomechanical and neuromuscular adaptations at the hip and pelvis, which persisted when the runners donned their shoes, indicating that some learning had occurred during an initial short bout of barefoot running.  相似文献   

3.
BackgroundForefoot strike (FFS) and rearfoot strike (RFS) runners differ in their kinematics, force loading rates, and joint loading patterns, but the timing of their muscle activation is less clear.MethodsForty recreational and highly trained runners ran at four speeds barefoot and shod on a motorized treadmill. “Barefoot” runners wore thin, five-toed socks and shod runners wore neutral running shoes. Subjects were instructed to run comfortably at each speed with no instructions about foot strike patterns.ResultsEleven runners landed with an FFS when barefoot and shod and eleven runners landed with an RFS when barefoot and shod. The 18 remaining runners shifted from an FFS when barefoot to an RFS when shod (shifters). Shod shifters ran with a lower stride frequency and greater stride length than all other runners. All FFS runners landed with more plantarflexed ankles and more vertical lower legs at the beginning of stance compared to RFS runners. FFS runners activated their plantarflexor muscles 11% earlier and 10% longer than RFS runners.ConclusionThis earlier and longer relative activation of the plantarflexors likely enhances the capacity for the passive structures of the foot and ankle to store elastic energy, and may also enhance the performance of the active muscle by increasing the storage of elastic strain energy in the cross-bridges and activated titin.  相似文献   

4.
Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strike, tibial and head impact accelerations, and tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle activity were registered. Only 68% of the runners adopted a non-rearfoot strike pattern during BF. Running BF led to a reduction of TA activity as well as to an increase of GL and GM activity compared to BRS and SH. Furthermore, BRS increased tibial peak acceleration, tibial magnitude and tibial acceleration rate compared to SH and BF. In conclusion, 32% of our runners showed a rearfoot strike pattern at the first attempts at running barefoot, which corresponds to a running style (BRS) that led to increased muscle activation and impact accelerations and thereby to a potentially higher risk of injury compared to running shod.  相似文献   

5.
ABSTRACT

Running is an activity with a consistently high injury rate. Running footwear design that mimics barefoot running has been proposed to reduce injury rate by increasing the strength of foot structures. However, there is little evidence to support this. The purpose of the current study is to use shear wave ultrasound elastography to examine material properties (shear modulus) of intrinsic foot structures in experienced minimally and traditionally shod runners. It is hypothesized that minimalist runners will exhibit increased stiffness compared to controls demonstrating the strengthening of these structures. Eighteen healthy runners (8 minimalist and 10 traditionalist), running a minimum of 10 mi · wk?1, participated. Elastography scans were performed on the left foot of each participant. There is no apparent stiffening of foot structures associated with wearing minimalist shoes. Only the FHB tendon is different between shoe types and, contrary to the hypothesis, was stiffer in traditionalist compared to minimalist runners (257.26 ± 51.64 kPa vs 160.88 ± 27.79 kPa, respectively). A moderate positive (r = 0.7) relationship between training load and tendon stiffness suggests strengthening of tendon when running in traditional shoes. If running in minimalist shoes increases loading on these structures without resulting in stronger tissues, it is possible that minimalist footwear may increase injury risk.  相似文献   

6.
BackgroundPrevious studies of foot strike patterns of distance runners in road races have typically found that the overwhelming majority of shod runners initially contact the ground on the rearfoot. However, none of these studies has attempted to quantify foot strike patterns of barefoot or minimally shod runners. This study classifies foot strike patterns of barefoot and minimally shod runners in a recreational road race.MethodsHigh-speed video footage was obtained of 169 barefoot and 42 minimally shod distance runners at the 2011 New York City Barefoot Run. Foot strike patterns were classified for each runner, and frequencies of forefoot, midfoot, and rearfoot striking were compared between the barefoot and minimally shod groups.ResultsA total of 59.2% of barefoot runners were forefoot strikers, 20.1% were midfoot strikers, and 20.7% were rearfoot strikers. For minimally shod runners, 33.3% were forefoot strikers, 19.1% were midfoot strikers, and 47.6% were rearfoot strikers. Foot strike distributions for barefoot and minimally shod runners were significantly different both from one another and from previously reported foot strike distributions of shod road racers.ConclusionFoot strike patterns differ between barefoot and minimally shod runners, with forefoot striking being more common, and rearfoot striking less common in the barefoot group.  相似文献   

7.
BackgroundRunning is becoming an increasingly popular activity among Americans with over 50 million participants. Running shoe research and technology has continued to advance with no decrease in overall running injury rates. A growing group of runners are making the choice to try the minimal or barefoot running styles of the pre-modern running shoe era. There is some evidence of decreased forces and torques on the lower extremities with barefoot running, but no clear data regarding how this corresponds with injuries. The purpose of this survey study was to examine factors related to performance and injury in runners who have tried barefoot running.MethodsThe University of Virginia Center for Endurance Sport created a 10-question survey regarding barefoot running that was posted on a variety of running blogs and Facebook pages. Percentages were calculated for each question across all surveys. Five hundred and nine participants responded with over 93% of them incorporating some type of barefoot running into their weekly mileage.ResultsA majority of the participants (53%) viewed barefoot running as a training tool to improve specific aspects of their running. However, close to half (46%) viewed barefoot training as a viable alternative to shoes for logging their miles. A large portion of runners initially tried barefoot running due to the promise of improved efficiency (60%), an attempt to get past injury (53%) and/or the recent media hype around the practice (52%). A large majority (68%) of runners participating in the study experienced no new injuries after starting barefoot running. In fact, most respondents (69%) actually had their previous injuries go away after starting barefoot running. Runners responded that their previous knee (46%), foot (19%), ankle (17%), hip (14%), and low back (14%) injuries all proceeded to improve after starting barefoot running.ConclusionPrior studies have found that barefoot running often changes biomechanics compared to shod running with a hypothesized relationship of decreased injuries. This paper reports the result of a survey of 509 runners. The results suggest that a large percentage of this sample of runners experienced benefits or no serious harm from transitioning to barefoot or minimal shoe running.  相似文献   

8.
9.
Running on a treadmill is an activity that is novel to many people. Thus, a familiarisation period may be required before reliable and valid determinations of biomechanical parameters can be made. The current study investigated the time required for treadmill familiarisation under barefoot and shod running conditions. Twenty-six healthy men, who were inexperienced in treadmill running, were randomly allocated to run barefoot or shod for 20 minutes on a treadmill at a self-selected comfortable pace. Sagittal-plane kinematics for the ankle, knee and hip, and ground reaction force and spatio-temporal data were collected at two-minute intervals. For the barefoot condition, temporal differences were observed in peak hip flexion and peak knee flexion during swing. For the shod condition, temporal differences were observed for peak vertical ground reaction force. No temporal differences were observed after 8 minutes for either condition. Reliability analysis revealed high levels of consistency (ICC > 0.90) across all consecutive time-points for all dependent variables for both conditions after 8 minutes with the exception of maximal initial vertical ground reaction force loading rate. Participants in both barefoot and shod groups were therefore considered familiarised to treadmill running after 8 minutes.  相似文献   

10.
In habitually shod recreational runners, we studied the combined influence of footwear and stretch-shortening cycle (SSC) fatigue on treadmill running pattern, paying special attention to neuro-mechanical adjustments in the acute and 2-day delayed recovery periods. The SSC exercise consisted of a series of 25 sub-maximal rebounds on a sledge apparatus repeated until exhaustion. The acute and delayed functional fatigue effects were quantified in a maximal drop jump test. The neuro-mechanical adjustments to fatigue were examined during two submaximal treadmill run tests of 3 min performed either barefoot or with shoes on. Surface electromyographic (EMG) activities, tibial accelerations and kinematics of the right lower limb were recorded during the first and last 15 s of each run. The main result was that neuro-mechanical differences between the shod and barefoot running patterns, classically reported in the absence of fatigue, persisted in the fatigued state. However, in the delayed recovery phase, rearfoot eversion was found to significantly increase in the shod condition. This specific footwear effect is considered as a potential risk factor of overuse injuries in longer runs. Therefore, specific care should be addressed in the delayed recovery phase of SSC fatigue and the use of motion control shoes could be of interest.  相似文献   

11.
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (= 0.003; Cohen’s = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (= 0.191–0.258; Cohen’s = 0.304–0.460). Initial vertical stiffness (= 0.032; Cohen’s = 0.671) and energy loss (= 0.044; Cohen’s = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness.  相似文献   

12.
Fatigue, developed over the course of a run, may cause changes in running kinematics. Training status may influence the effect of fatigue on running kinematics, since well trained, competitive runners are used to running until exhaustion, whereas novice runners are not. This study aimed to determine changes in running kinematics during an exhaustive run in both novice (NOVICE) and competitive (COMP) long-distance runners. About 15 NOVICE and 15 COMP runners performed a treadmill run, until voluntary exhaustion at 3,200 m time trial pace. Joint angles and global trunk and pelvis angles were recorded at the beginning and at the end of the run. In both groups, peak pelvic anterior tilt, pelvic rotation range of motion (both during stance phase) and ankle plantar flexion during swing phase increased after the exhaustive run. There was a significant interaction effect between group and exhaustion for peak forward trunk lean, which increased only in the NOVICE group, and for hip abduction during mid-swing, which increased in NOVICE and decreased in COMP runners. In conclusion, NOVICE runners showed larger kinematic adjustments when exhausted than COMP runners. This may affect their running performance and should be taken into account when assessing a runner’s injury risk.  相似文献   

13.
The aim of this study was to determine the influence of barefoot running on foot-strike patterns, eversion–inversion, running speed and vertical foot rotation in endurance runners. Eighty healthy recreational runners (age = 34.11 ± 12.95 years old, body mass index = 22.56 ± 2.65 kg · m?2) performed trials in shod/unshod running conditions on a treadmill at comfortable and competitive self-selected speeds. Data were collected by systematic observation of lateral and back recordings at 240 Hz. McNemar’s test indicated significant differences between shod/unshod conditions and foot strike at comfortable and competitive speeds (< 0.001). Speed was related to vertical foot rotation type for shod (< 0.01) and unshod conditions (< 0.05). Significant differences were found between shod/unshod conditions in foot rotation at comfortable running speeds (< 0.001) and competitive running speeds (< 0.01). No significant difference was found in inversion or eversion (≥ 0.05). In conclusion, the results suggest that running kinematics, in terms of foot-strike patterns and vertical foot rotation, differ between shod/unshod conditions, while the inversion or eversion degree remains unchanged.  相似文献   

14.
BackgroundThis prospective study explored the effects of endurance running (ER) in minimal versus standard running shoes on the foot's superficial layer intrinsic muscles and the function of the longitudinal arch. Our hypothesis was that running in minimal shoes would cause hypertrophy in these muscles and lead to higher, stronger, stiffer arches.MethodsThe hypothesis was tested using a sample of 33 healthy runners randomized into two groups, a control group shod in traditional running footwear and an experimental group shod in minimal support footwear, whose feet were scanned in an MRI before and after a 12-week training regime. Running kinematics as well as arch stiffness and height were also assessed before and after the treatment period.ResultsAnalysis of anatomical cross-sectional areas and muscle volumes indicate that the flexor digitorum brevis muscle became larger in both groups by 11% and 21%, respectively, but only the minimally shod runners had significant areal and volumetric increases of the abductor digiti minimi of 18% and 22%, respectively, and significantly increased longitudinal arch stiffness (60%).ConclusionThese results suggest that endurance running in minimal support footwear with 4 mm offset or less makes greater use of the spring-like function of the longitudinal arch, thus leading to greater demands on the intrinsic muscles that support the arch, thereby strengthening the foot.  相似文献   

15.
BackgroundNumerous studies about the interaction between footwear (and barefoot) and kinematic and kinetic outcomes have been published over the last few years. Recent studies however lead to the conclusion that the assumed interactions depend mainly on the subjects' experience of barefoot (BF) walking/running, the preferred running strike pattern, the speed, the hardness of the surface, the thickness of the midsole material, and the runners' level of ability. The aim of the present study was to investigate lower leg kinematics of BF running and running in minimal running shoes (MRS) to assess comparability of BF kinematics in both conditions. To systematically compare both conditions we monitored the influencing variables described above in our measurement setup. We hypothesized that running in MRS does not alter lower leg kinematics compared to BF running.MethodsThirty-seven subjects, injury-free and active in sports, ran BF on an EVA foam runway, and also ran shod wearing Nike Free 3.0 on a tartan indoor track. Lower-leg 3D kinematics was measured to quantify rearfoot and ankle movements. Skin markers were used in both shod and BF running.ResultsAll runners revealed rearfoot strike pattern when running barefoot. Differences between BF and MRS running occurred particularly during the initial stance phase of running, both in the sagittal and the frontal planes. BF running revealed a flatter foot placement, a more plantar flexed ankle joint and less inverted rearfoot at touchdown compared to MRS running.ConclusionBF running does not change the landing automatically to forefoot running, especially after a systematic exclusion of surface and other influencing factors. The Nike Free 3.0 mimics some BF features. Nevertheless, changes in design of the Nike Free should be considered in order to mimic BF movement even more closely.  相似文献   

16.
BackgroundThe majority of injuries reported in female basketball players are ankle sprains and mechanisms leading to injury have been debated. Investigations into muscular imbalances in barefoot versus shod conditions and their relationship with injury severity have not been performed. The purpose of this study was to investigate the effects of wearing athletic shoes on muscular strength and its relationship to lower extremity injuries, specifically female basketball players due to the high incidence of ankle injuries in this population.MethodsDuring pre-season, 11 female collegiate basketball players underwent inversion and eversion muscle strength testing using an isokinetic dynamometer in both a barefoot and shod conditions. The difference between conditions was calculated for inversion and eversion peak torque, time to peak torque as well as eversion-to-inversion peak torque percent strength ratio for both conditions. Lower extremity injuries were documented and ranked in severity. The ranked difference between barefoot and shod conditions for peak torque and time to peak torque as well as percent strength ratio was correlated with injury ranking using a Spearman rho correlation (ρ) with an α level of 0.05.ResultsThe ranked differences in barefoot and shod for peak eversion and inversion torque at 120°/s were correlated with their injury ranking. Ranking of the athletes based on the severity of injuries that were sustained during the season was found to have a strong, positive relationship with the difference in peak eversion torque between barefoot and shod (ρ = 0.78; p = 0.02).ConclusionIt is possible that a large discrepancy between strength in barefoot and shod conditions can predispose an athlete to injury. Narrowing the difference in peak eversion torque between barefoot and shod could decrease propensity to injury. Future work should investigate the effect of restoration of muscular strength during barefoot and shod exercise on injury rates.  相似文献   

17.
ABSTRACT

The majority of barefoot running studies have not considered speed as an influential factor on foot strike pattern. The aim of this study was to investigate differences in foot strike pattern and spatiotemporal characteristics between barefoot and shod overground running at varying speeds. We first determined maximal running speed (Vm) over 50 m in 15 recreationally active men who self-reported as habitual rearfoot strikers. Participants then completed shod and barefoot running trials at different speeds equivalent to approximately 90%, 80%, 70% and 60% of Vm. Sagittal plane two-dimensional (2D) foot-ground contact angle, ankle plantar-dorsi flexion angle, contact time, flight time, step length and step rate variables for each trial were recorded. A significant interaction effect of running speed and footwear condition (p < 0.05) on foot-ground contact angle, ankle plantar-dorsi flexion angle and contact time was observed. There was a main effect of running speed (p < 0.01) on flight time, step length and step rate. There was a main effect of footwear condition on step length (p < 0.01). Participants were more inclined to plantarflex the ankle and contact the ground with the forefoot at higher percentages of Vm, especially when running barefoot.  相似文献   

18.
An evaluation of a six-week Combined minimal footwear transition and gait-retraining combination vs. gait retraining only on impact characteristics and leg stiffness. Twenty-four trained male runners were randomly assigned to either (1) Minimalist footwear transition Combined with gait-retraining over a six-week period (“Combined” group; n = 12) examined in both footwear, or (2) a gait-retraining group only with no minimalist footwear exposure (“Control”; n = 12). Participants were assessed for loading rate, impact peak, vertical, knee and ankle stiffness, and foot-strike using 3D and kinetic analysis. Loading rate was significantly higher in the Combined group in minimal shoes in pre-tests compared to a Control (P ≤ 0.001), reduced significantly in the Combined group over time (P ≤ 0.001), and was not different to the Control group in post-tests (P = 0.16). The impact peak (P = 0.056) and ankle stiffness reduced in both groups (P = 0.006). Loading rate and vertical stiffness was higher in minimalist footwear than conventional running shoes both pre (P ≤ 0.001) and post (P = 0.046) the intervention. There has a higher tendency to non-rearfoot strike in both interventions, but more acute changes in the minimalist footwear. A Combined intervention can potentially reduce impact variables. However, higher loading rate initially in minimalist footwear may increase the risk of injury in this condition.  相似文献   

19.
PurposeThis study examined variation in foot strike types, lower extremity kinematics, and arch height and stiffness among Tarahumara Indians from the Sierra Tarahumara, Mexico.MethodsHigh speed video was used to study the kinematics of 23 individuals, 13 who habitually wear traditional minimal running sandals (huaraches), and 10 who habitually wear modern, conventional running shoes with elevated, cushioned heels and arch support. Measurements of foot shape and arch stiffness were taken on these individuals plus an additional sample of 12 individuals.ResultsMinimally shod Tarahumara exhibit much variation with 40% primarily using midfoot strikes, 30% primarily using forefoot strikes, and 30% primarily using rearfoot strikes. In contrast, 75% of the conventionally shod Tarahumara primarily used rearfoot strikes, and 25% primarily used midfoot strikes. Individuals who used forefoot or midfoot strikes landed with significantly more plantarflexed ankles, flexed knees, and flexed hips than runners who used rearfoot strikes. Foot measurements indicate that conventionally shod Tarahumara also have significantly less stiff arches than those wearing minimal shoes.ConclusionThese data reinforce earlier studies that there is variation among foot strike patterns among minimally shod runners, but also support the hypothesis that foot stiffness and important aspects of running form, including foot strike, differ between runners who grow up using minimal versus modern, conventional footwear.  相似文献   

20.
This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号