首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE). Male students performed 30 eccentric contractions (ECC) of the elbow flexors using a dumbbell set at 80% of the pre-exercise maximal isometric force (MIF). Participants were then classified into low (LR; n = 6), medium (MR; n = 6), high (HR; n = 5), and higher (HrR; n = 7) based on the increase in blood creatine kinase (CK) activity. A year later, participants repeated this exercise (ECC30). Four days after ECC30, participants performed 70 eccentric contractions (ECC70). Range of motion, MIF, upper arm circumference, soreness, and blood CK activity were measured before and up to 9 days after each bout. The change in the criterion measures following ECC and ECC30 were similar for each group. There were no further changes in all parameters after ECC70 for MR, HR, and HrR, although there was a small increase in CK after ECC70 for LR. LR showed a smaller RBE after ECC70 compared with the other groups. It is concluded that participants who exercised 1 year apart showed remarkably similar responses between the bouts. The extent of the RBE following the second bout for the LR group is less for participants who demonstrate the least evidence of muscle damage after a first exercise bout.  相似文献   

2.
The aim of this study was to examine neuromuscular variables contributing to differences in force loss after participants were exposed to the same relative bout of eccentric exercise. Thirty-six males performed 50 maximal eccentric contractions of the elbow flexors and were stratified into high responders (n = 10) and low responders (n = 10) based on force loss 36 h after exercise. Maximal voluntary isometric contractions (MVCs) and electromyography (EMG) were measured at baseline and 36 h after exercise. During eccentric exercise, mean peak torque, mean end-range torque from the final 25% of each trial and total angular impulse were computed over 25 contractions in each of two bouts. The slope of the change in these values for each 25 eccentric contractions was calculated for each participant using linear regression. At baseline, MVC was not different between groups (low responders: 97.0 +/- 9.6 N x m; high responders: 82.7 +/- 6.4 N x m; P = 0.08). High responders demonstrated a 68% (range 62-78%) reduction in MVC and low responders a 39% (29-48%) reduction after exercise. Peak torque, end-range torque and total angular impulse were 13%, 40% and 33% higher, respectively, in the low than in the high responders (peak torque: P = 0.0002; end-range torque: P < 0.0001; total angular impulse: P < 0.001). The rate of decline in peak torque slope was greater in high than in low responders (P = 0.044). In conclusion, lower peak torque, end-range torque and total angular impulse during eccentric contractions and a greater peak torque slope may identify high responders to eccentric exercise.  相似文献   

3.
A single bout of eccentric exercise induces a protective adaptation against damage from a repeated bout. The aim of this study was to determine whether this repeated bout effect is due to a change in the length-tension relationship. Twelve individuals performed an initial bout of six sets of 10 eccentric quadriceps contractions and then performed a repeated bout 2 weeks later. Eccentric contractions were performed on an isokinetic dynamometer at 1.04 rad x s(-1) with a target intensity of 90% of isometric strength at 70 degrees of knee flexion. Isometric strength and pain were recorded before and after both eccentric bouts and on each of the next 3 days. Isometric strength was tested at 30 degrees, 50 degrees, 70 degrees, 90 degrees and 110 degrees of knee flexion. On the days following the initial bout, there was a significant loss of isometric strength at all knee flexion angles except 110 degrees (bout x angle: P < 0.01). On day 2, strength averaged 86% of baseline for 30-90 degrees and 102% of baseline for 110 degrees. Strength loss and pain after the initial bout was contrasted by minimal changes after the repeated bout (pain: P < 0.001; strength: P < 0.01). The repeated bout effect was associated with a rightward shift in the length-tension curve; before the repeated bout, isometric strength was 6.8% lower at 30 degrees and 13.6% higher at 110 degrees compared with values before the initial bout (bout x angle: P < 0.05). Assuming that torque production at 110 degrees occurs on the descending limb of the length-tension curve, the increase in torque at 110 degrees may be explained by a longitudinal addition of sarcomeres. The addition of sarcomeres would limit sarcomere strain for subsequent eccentric contractions and may explain the repeated bout effect observed here.  相似文献   

4.
This study examined the effects of beetroot juice on the repeated bout effect (RBE) to eccentric exercise. Twenty-nine recreationally active males performed two bouts of 100-drop jumps, separated by 14–21 days. Using a double-blind, independent groups design, participants consumed either a higher dose beetroot juice (H-BT; 250 ml, n = 10), a lower dose beetroot juice (L-BT; 125 ml, n = 9) or an isocaloric placebo (PLA; 250 ml, n = 10) for 3 days after bout 1; no drinks were consumed after bout 2. Maximal isometric voluntary contraction (MIVC), countermovement jump (CMJ), pressure-pain threshold (PPT) and creatine kinase (CK) were measured pre, post, 24, 48 and 72 h following both bouts. In bout 2, CMJ and MIVC recovered quicker and CK activity was attenuated (versus bout 1) (P < 0.05) in all groups, demonstrating an RBE. At 24 h post bout 1, MIVC was 84.1 ± 16.1, 83.6 ± 11.6, 79.7 ± 15.1% relative to baseline values in the H-BT, L-BT and PLA groups, respectively; at 24 h post bout 2, MIVC recovered to 90.7 ± 13.7, 92.9 ± 6.9, 87.8 ± 6.9, in the H-BT, L-BT and PLA groups, respectively. These findings suggest that supplementation with antioxidant-rich beetroot juice does not adversely affect acute adaptations to a bout of eccentric exercise.  相似文献   

5.
A single bout of eccentric exercise induces a protective adaptation against damage from a repeated bout. The aim of this study was to determine whether this repeated bout effect is due to a change in the length–tension relationship. Twelve individuals performed an initial bout of six sets of 10 eccentric quadriceps contractions and then performed a repeated bout 2 weeks later. Eccentric contractions were performed on an isokinetic dynamometer at 1.04 rad?·?s?1 with a target intensity of 90% of isometric strength at 70° of knee flexion. Isometric strength and pain were recorded before and after both eccentric bouts and on each of the next 3 days. Isometric strength was tested at 30°, 50°, 70°, 90° and 110° of knee flexion. On the days following the initial bout, there was a significant loss of isometric strength at all knee flexion angles except 110° (bout×angle: P?<0.01). On day 2, strength averaged 86% of baseline for 30–90° and 102% of baseline for 110°. Strength loss and pain after the initial bout was contrasted by minimal changes after the repeated bout (pain: P?<0.001; strength: P?<0.01). The repeated bout effect was associated with a rightward shift in the length–tension curve; before the repeated bout, isometric strength was 6.8% lower at 30° and 13.6% higher at 110° compared with values before the initial bout (bout×angle: P?<0.05). Assuming that torque production at 110° occurs on the descending limb of the length–tension curve, the increase in torque at 110° may be explained by a longitudinal addition of sarcomeres. The addition of sarcomeres would limit sarcomere strain for subsequent eccentric contractions and may explain the repeated bout effect observed here.  相似文献   

6.
血清肌酸激酶与骨骼肌损伤关系的探讨   总被引:17,自引:0,他引:17  
研究目的在于对血清肌酸激酶与骨骼肌损伤之间的关系进行探讨。采用跑台一次性离心运动至力竭的动物模型,48只7周龄雌性大鼠随机分为安静对照组和运动后即刻、1、2、4和7天组,测定血清肌酸激酶活性,同时通过HE染色分析骨骼肌形态学损伤变化。结果显示血清肌酸激酶活性峰值出现在运动后即刻,运动后1天迅速下降。HE染色结果则表明离心运动后骨骼肌损伤呈现延迟性时相特点,在运动后第2天骨骼肌损伤范围达到最大。本实验表明血清肌酸激酶与骨骼肌损伤的变化趋势并不一致,血清肌酸激酶水平不能反映骨骼肌损伤。  相似文献   

7.
Nine participants performed two bouts of a step exercise, during which the quadriceps muscle of one leg acted eccentrically. Before and after the exercise, isokinetic torque was measured over a range of knee angles to determine the optimum angle for torque. Immediately after the first bout of exercise, the quadriceps showed a significant (P < 0.05) shift of 15.6 +/- 1.4 degrees (mean +/-sx) of its optimum angle in the direction of longer lengths, suggesting the presence of damage. A drop in peak torque, together with delayed soreness and swelling, confirmed that damage to muscle fibres had occurred. After the second bout of exercise, 8 days later, the shift in optimum angle was 10.4 +/- 1.0 degrees, which was significantly less than after the first bout (P < 0.05). Other indicators of damage were also reduced. In addition, the muscle exhibited a sustained shift in optimum angle (3.4 +/- 0.9 degrees), suggesting that some adaptation had taken place after the first bout of exercise. We conclude that muscles like the quadriceps can show evidence of damage after a specific programme of eccentric exercise, followed by an adaptation response. This is despite the fact that the quadriceps routinely undergoes eccentric contractions in everyday activities.  相似文献   

8.
This study was undertaken to examine the acute effect of interferential current on mechanical pain threshold and isometric peak torque after delayed onset muscle soreness induction in human hamstrings. Forty-one physically active healthy male volunteers aged 18-33 years were randomly assigned to one of two experimental groups: interferential current group (n = 21) or placebo group (n = 20). Both groups performed a bout of 100 isokinetic eccentric maximal voluntary contractions (10 sets of 10 repetitions) at an angular velocity of 1.05 rad · s(-1) (60° · s(-1)) to induce muscle soreness. On the next day, volunteers received either an interferential current or a placebo application. Treatment was applied for 30 minutes (4 kHz frequency; 125 μs pulse duration; 80-150 Hz bursts). Mechanical pain threshold and isometric peak torque were measured at four different time intervals: prior to induction of muscle soreness, immediately following muscle soreness induction, on the next day after muscle soreness induction, and immediately after the interferential current and placebo application. Both groups showed a reduction in isometric torque (P < 0.001) and pain threshold (P < 0.001) after the eccentric exercise. After treatment, only the interferential current group showed a significant increase in pain threshold (P = 0.002) with no changes in isometric torque. The results indicate that interferential current was effective in increasing hamstrings mechanical pain threshold after eccentric exercise, with no effect on isometric peak torque after treatment.  相似文献   

9.
Electromyographic analysis of repeated bouts of eccentric exercise   总被引:1,自引:0,他引:1  
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.  相似文献   

10.
It has previously been shown that females incur less muscle damage than males after strenuous exercise, but limited data are available for humans. To determine possible differences between the sexes in humans, the response to high-force eccentric exercise was examined in a large sample of women (n = 83) and men (n = 82). The participants performed a bout of eccentric exercise of the elbow flexors consisting of 70 maximal repetitions. Isometric strength, resting elbow angle and muscle soreness were measured before, immediately after (except soreness) and then daily for 7 days after exercise. There was a significant loss in strength among both groups (69% for women and 63% for men) (P < 0.01) immediately after exercise; at 168 h post-exercise, women still had a 27% strength loss and men had a 24% strength loss. No significant difference in strength loss or recovery rate was found between men and women. Soreness reached peak values 32-48 h post-exercise (P < 0.01), with no significant difference between men and women. Range of motion decreased significantly until 3 days after exercise (14.6 degrees or 0.255 rad loss for women; 12.2 degrees or 0.213 rad loss for men) (P < 0.01); at 168 h post-exercise, the women and men still showed a loss of 4.8 degrees (0.084 rad) and 4.0 degrees (0.07 rad), respectively. There was a significant interaction of sex x time (P < 0.01); a post-hoc test indicated that the women experienced a greater loss in range of motion at 72 h than men and this difference was maintained to 168 h post-exercise (P < 0.01). Thus, our results do not support the contention that women have a lower response to eccentric exercise than men.  相似文献   

11.
The aim of this study was to examine neuromuscular variables contributing to differences in force loss after participants were exposed to the same relative bout of eccentric exercise. Thirty-six males performed 50 maximal eccentric contractions of the elbow flexors and were stratified into high responders (n?=?10) and low responders (n?=?10) based on force loss 36 h after exercise. Maximal voluntary isometric contractions (MVCs) and electromyography (EMG) were measured at baseline and 36 h after exercise. During eccentric exercise, mean peak torque, mean end-range torque from the final 25% of each trial and total angular impulse were computed over 25 contractions in each of two bouts. The slope of the change in these values for each 25 eccentric contractions was calculated for each participant using linear regression. At baseline, MVC was not different between groups (low responders: 97.0?±?9.6 N?·?m; high responders: 82.7?±?6.4 N?·?m; P?=?0.08). High responders demonstrated a 68% (range 62-78%) reduction in MVC and low responders a 39% (29-48%) reduction after exercise. Peak torque, end-range torque and total angular impulse were 13%, 40% and 33% higher, respectively, in the low than in the high responders (peak torque: P?=?0.0002; end-range torque: P?<?0.0001; total angular impulse: P?<?0.001). The rate of decline in peak torque slope was greater in high than in low responders (P?=?0.044). In conclusion, lower peak torque, end-range torque and total angular impulse during eccentric contractions and a greater peak torque slope may identify high responders to eccentric exercise.  相似文献   

12.
Cryotherapy is an effective treatment for acute sports injury to soft tissue, although the effect of cryotherapy on exercise-induced muscle damage is unclear. The aim of this study was to assess the effects of cold water immersion on the symptoms of exercise-induced muscle damage following strenuous eccentric exercise. After performing a bout of damage-inducing eccentric exercise (eight sets of five maximal reciprocal contractions at 0.58 rad x s(-1)) of the elbow flexors on an isokinetic dynamometer, 15 females aged 22.0+/-2.0 years (mean +/- s) were allocated to a control group (no treatment, n = 7) or a cryotherapy group (n = 8). Subjects in the cryotherapy group immersed their exercised arm in cold water (15 degrees C) for 15 min immediately after eccentric exercise and then every 12 h for 15 min for a total of seven sessions. Muscle tenderness, plasma creatine kinase activity, relaxed elbow angle, isometric strength and swelling (upper arm circumference) were measured immediately before and for 3 days after eccentric exercise. Analysis of variance revealed significant (P < 0.05) main effects for time for all variables, with increases in muscle tenderness, creatine kinase activity and upper arm circumference, and decreases in isometric strength and relaxed elbow angle. There were significant interactions (P<0.05) of group x time for relaxed elbow angle and creatine kinase activity. Relaxed elbow angle was greater and creatine kinase activity lower for the cryotherapy group than the controls on days 2 and 3 following the eccentric exercise. We conclude that although cold water immersion may reduce muscle stiffness and the amount of post-exercise damage after strenuous eccentric activity, there appears to be no effect on the perception of tenderness and strength loss, which is characteristic after this form of activity.  相似文献   

13.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

14.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad s -1 ) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

15.
Abstract

The present study compared the changes in markers of muscle damage after bouts of resistance exercise employing the Multiple-sets (MS) and Half-pyramid (HP) training systems. Ten healthy men (26.1±6.3 years), who had been involved in regular resistance training, performed MS and HP bouts, 14 days apart, in a randomised, counter-balanced manner. For the MS bout, participants performed three sets of maximum repetitions at 75%-1RM (i.e. 75% of a One Repetition Maximum) for the three exercises, starting with the bench press, followed by pec deck and decline bench press. For the HP bout, the participants performed three sets of maximum repetitions with 67%-1RM, 74%-1RM and 80%-1RM for the first, second and third sets, respectively, for the same three exercise sequences as the MS bout. The total volume of load lifted was equated between both bouts. Muscle soreness, plasma creatine kinase (CK) activity, myoglobin (Mb) and C-reactive protein (CRP) concentrations were assessed before and for three days after each exercise bout, and the changes over time were compared between MS and HP using two-way repeated measures ANOVA. Muscle soreness developed significantly (P<0.01) after both bouts, but no significant difference was observed between MS and HP. Plasma CK activity and Mb concentration increased significantly (P<0.01) without significant differences between bouts, and CRP concentration did not change significantly after either bout. These results suggest that the muscle damage profile is similar for MS and HP, probably due to the similar total volume of load lifted.  相似文献   

16.
The purpose of this investigation was to study the effects of an acute bout of aerobic exercise on state anxiety of women while controlling for iron status (hemoglobin and serum ferritin). Participants were 24 active women, ages 18-20 years (n = 12) and 35-45 years (n = 12). In addition to a nonexercise control condition, participants completed one exercise bout at 60% maximal oxygen uptake (VO2max) and one at 80% VO2max. Each exercise session consisted of a 33-min bout in which participants exercised at their target intensities for a 20-min segment. Immediately before each exercise trial, participants were given the Spielberger State Anxiety Inventory (SAI). The SAI was again administered immediately following the exercise session and at 30, 60, and 90 min postexercise. Data were analyzed using an Age x Intensity x Time (2 x 3 x 5) repeated measures analysis of covariance (ANCOVA) with iron status serving as the covariate. The ANCOVA on state anxiety yielded significant effects for time (p < .0001, eta2(p) = .48), the Intensity x Time interaction (p = .0006, eta2(p) = .19), and the Intensity x Age interaction (p = .04, eta2(p) = .15). All three exercise conditions (including control) showed a decline in state anxiety across time, but the 80% VO2max condition showed a sharper decline. Intensity of exercise conditions did not differ in state anxiety at baseline or immediately after exercise, but a difference favoring the 80% VO2max condition over the control condition emerged at 30 min postexercise. After controlling for iron status, older women who exercised at 80% VO2max exhibited lower SAI scores compared to the control condition.  相似文献   

17.
The aim of this study was to examine the relationship between myosin heavy chain (MHC) release as a specific marker of slow-twitch muscle fibre breakdown and magnetic resonance imaging (MRI) of skeletal muscle injury after eccentric exercise. The effects of a single series of 70 high-intensity eccentric contractions of the quadriceps femoris muscle group (single leg) on plasma concentrations of creatine kinase and MHC fragments were assessed in 10 young male sport education trainees before and 1 and 4 days after exercise. To visualize muscle injury, MRI of the loaded thigh was performed before and 4 days after the eccentric exercise. All participants recorded an increase (P < 0.05) in creatine kinase after exercise. In five participants, T2 signal intensity was unchanged post-exercise compared with pre-exercise and MHC plasma concentration was normal; however, they showed an increase (P < 0.05) in creatine kinase after exercise. For the remaining five participants, there was an increase in T2 signal intensity of the loaded vastus intermedius and vastus lateralis. These changes in MRI were accompanied by an increase in MHC plasma concentration (P< 0.01) as well as an increase in creatine kinase (P < 0.01). We suggest that changes in MRI T, signal intensity after muscle damage induced by eccentric exercise are closely related to damage to structurally bound contractile filaments of some muscle fibres. Additionally, MHC plasma release indicates that this damage affects not only fast-twitch fibres but also some slow-twitch fibres.  相似文献   

18.
The aim of this study was to examine the relationship between myosin heavy chain (MHC) release as a specific marker of slow-twitch muscle fibre breakdown and magnetic resonance imaging (MRI) of skeletal muscle injury after eccentric exercise. The effects of a single series of 70 high-intensity eccentric contractions of the quadriceps femoris muscle group (single leg) on plasma concentrations of creatine kinase and MHC fragments were assessed in 10 young male sport education trainees before and 1 and 4 days after exercise. To visualize muscle injury, MRI of the loaded thigh was performed before and 4 days after the eccentric exercise. All participants recorded an increase ( P ? 0.05) in creatine kinase after exercise. In five participants, T2 signal intensity was unchanged post-exercise compared with pre-exercise and MHC plasma concentration was normal; however, they showed an increase ( P ? 0.05) in creatine kinase after exercise. For the remaining five participants, there was an increase in T2 signal intensity of the loaded vastus intermedius and vastus lateralis. These changes in MRI were accompanied by an increase in MHC plasma concentration ( P ? 0.01) as well as an increase in creatine kinase ( P ? 0.01). We suggest that changes in MRI T2 signal intensity after muscle damage induced by eccentric exercise are closely related to damage to structurally bound contractile filaments of some muscle fibres. Additionally, MHC plasma release indicates that this damage affects not only fast-twitch fibres but also some slow-twitch fibres.  相似文献   

19.
Abstract

Post exercise hypotension (PEH) is primarily attributed to post-exercise vasodilation via central and peripheral mechanisms. However, the specific contribution of metabolic cost during exercise, independent of force production, is less clear. This study aimed to use isolated concentric and eccentric exercise to examine the role of metabolic activity in eliciting PEH, independent of total work. Twelve participants (6 male) completed upper and lower body concentric (CONC), eccentric (ECC), and traditional (TRAD) exercise sessions matched for work (3?×?10 in TRAD and 3?×?20 in CONC and ECC; all at 65% 1RM). Blood pressure was collected at baseline and every 15?min after exercise for 120?min. Brachial blood flow and vascular conductance were also assessed at baseline, immediately after exercise, and every 30?min after exercise. ?O2 was lower during ECC compared to CONC and TRAD (?2.7?mL/Kg/min?±?0.4 and ?2.2?mL/Kg/min?±?0.4, respectively p?<?0.001). CONC augmented the PEH response (Peak ΔMAP ?3.3?mmHg?±?0.9 [mean?±?SE], p?=?0.006) through 75?min of recovery and ECC elicited a post-exercise hypertensive response through 120?min of recovery (Peak ΔMAP +4.5?mmHg?±?0.8, p?<?0.001). CONC and TRAD elicited greater increases in brachial blood flow post exercise than ECC (Peak Δ brachial flow +190.4?mL/min?±?32.3, +202.3?mL/min?±?39.2, and 69.6?mL/min?±?19.8, respectively, p?≤?0.005), while conductance increased immediately post exercise in all conditions and then decreased throughout recovery following ECC (?32.9?mL/min/mmHg?±?9.3, p?=?0.005). These data suggest that more metabolically demanding concentric exercise augments PEH compared to work-matched eccentric exercise.  相似文献   

20.
Abstract

This study investigated whether hot pack treatment could provide prophylactic effects on muscle damage induced by eccentric exercise of the wrist extensors. Twenty-eight healthy men (age 21±1 years, weight 65±16 kg, height 171±6 cm) were randomly placed into hot pack (n = 14) and control (n = 14) groups. All participants performed an exercise consisting of 300 maximal eccentric contractions of the wrist extensors of the non-dominant arm using an isokinetic dynamometer. A hot pack was applied for 20 min to the wrist extensors of the exercised arm before the exercise for the hot pack group. The control group received no treatment before the exercise. Measured variables included pain intensity assessed by a visual analogue scale and a modified Likert's scale, cold thermal pain threshold, pressure pain threshold (PPT), range of motion in active wrist flexion (ROM-AF) and extension (ROM-AE), range of motion in passive wrist flexion (ROM-PF) and extension (ROM-PE), grip strength, and wrist extension strength. Changes in these variables before, immediately after, and 1 to 8 days following the exercise were compared between groups by a two-way repeated measures ANOVA. All outcome measures from both groups (except for the cold thermal pain threshold of the hot pack group) demonstrated a significant change within the first 2–3 days following exercise. Significant differences between groups were only found at a single point in time for PPT, ROM-PF, ROM-PE and ROM-AE, and the changes were smaller for the hot pack group in comparison to the control group. These results suggest that the prophylactic effects of hot pack treatment on eccentric exercise-induced muscle damage of the wrist extensors are limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号