首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the event-triggered bipartite consensus problem is investigated for nonlinear multi-agent systems under switching topologies, only part of topologies contain directed spanning tree rooted at the leader. First, a dynamic bipartite compensator is constructed based on relative output information to provide control signal. Then, the time-varying gain method is adopted to propose a compensator-based event-triggered control protocol without Zeno behavior. Notably, the control protocol proposed achieves the bipartite consensus while reducing update frequency effectively. Moreover, a low conservative switching law is designed by the topology-dependent average dwell time strategy, which fully considers the differences among topologies and provides an independent average dwell time for each topology. As an extension, the nonlinear multi-agent systems with non-zero input of leader are further studied. Finally, a practical example is presented to demonstrate the feasibility of proposed control protocol.  相似文献   

2.
This paper addresses the problem of cluster lag consensus for first-order multi-agent systems which can be formulated as moving agents in a capacity-limited network. A distributed control protocol is developed based on local information, and the robustness of the protocol is analyzed by using tools of Frobenius norm, Lyapunov functional and matrix theory. It is shown that when the root agents of the clusters are influenced by the active leader and the intra-coupling among agents is stronger enough, the multi-agent system will reach cluster lag consensus. Moreover, cluster lag consensus for multi-agent systems with a time-varying communication topology and heterogeneous multi-agent systems with a directed topology are studied. Finally, the effectiveness of the proposed protocol is demonstrated by some numerical simulations.  相似文献   

3.
This paper researches the output consensus problem of heterogeneous linear multi-agent systems with cooperative and antagonistic interactions. Two fixed-time state compensator control approaches, one static dynamic and the other distributed adaptive dynamic, are considered for heterogeneous systems subject to logarithmic quantization. Then, a fixed-time output regulation control protocol is constructed to cope with the problem of bipartite output consensus and adaptive fixed-time output consensus of heterogeneous systems which is fully distributed without any global information. Besides, the fully distributed adaptive algorithm is employed to calculate the system matrix of leader and it’s also effectively eliminated the harmful chattering. Finally, two simulations are carried out to testify the feasibility of theoretical results.  相似文献   

4.
This paper considers distributed consensus problem of multi-agent systems consisting of general linear dynamics with a time-invariant communication topology. A distributed full-order observer type consensus protocol based on relative output measurements of neighbor agents is proposed. It is found that the consensus problem of linear multi-agent systems with a directed communication topology having a spanning tree can be solved if and only if all subsystems are asymptotically stable. Some necessary and sufficient conditions are obtained for ensuring consensus in multi-agent systems. The design technique is based on algebraic graph theory, Riccati inequality and linear control theory. Finally, simulation example is given to illustrate the effectiveness of the theoretical results.  相似文献   

5.
This paper investigates consensus problem for heterogeneous discrete linear time-invariant (LTI) multi-agent systems subjected to time-varying network communication delays and switching topology. A new two-stage consensus protocol is proposed based on stochastic, indecomposable and aperiodic (SIA) matrix and pseudo predictive scheme. With pseudo predictive scheme the network delay is compromised. Consensus analysis based on seminorm is provided. Results give conditions for such systems with periodic switching topology and time-varying delays to reach consensus. Highlights of the paper include: the protocol can be implemented in a distributed manner; the pseudo predictive approach requires less computation and communication; the verification of consensus convergence does not require the global information about the communication topology; the protocol allows delay to be time-varying, topology to dynamically and asymmetrically switch and system mode to be unstable. Numerical and practical examples demonstrate the effectiveness of the theoretical results.  相似文献   

6.
This paper investigates the consensus problem of discrete-time networked multi-agent systems (DNMASs) with a directed topology and communication delay, where exact state and output of each agent are not measured, and yet output differences between agent and its neighboring ones (relative outputs for short) are available. Based on the networked predictive control scheme and relative output data, a novel protocol is proposed to overcome the effect of delay on the consensus actively. Moreover, for the DNMASs with a fixed topology and constant communication delay, delay-independent necessary and/or sufficient conditions of achieving consensus are obtained, which reveal that the essence of dominating the consensus is agents' dynamics and communication topology. Simulation results further demonstrate the effectiveness of theoretical results.  相似文献   

7.
This paper investigates the bipartite leader-following consensus of second-order multi-agent systems with signed digraph topology. To significantly reduce the communication burden, an event-triggered control algorithm is proposed to solve the bipartite leader-following consensus problem, where a novel event-triggered function is designed. Under some mild assumptions on the network topology and node dynamics, a sufficient condition is derived using Lyapunov stability method and matrix theory to guarantee the bipartite consensus. In particular, it is shown that the continuous communication can be avoided and the Zeno-behavior can be excluded for the designed event-triggered algorithm. Numerical simulations are presented to illustrate the correctness of the theoretical analysis.  相似文献   

8.
In this paper, we consider the consensus problem of a class of heterogeneous multi-agent systems composed of the linear first-order and second-order integrator agents together with the nonlinear Euler–Lagrange (EL) agents. First, we propose a distributed consensus protocol under the assumption that the parameters of heterogeneous system are exactly known. Sufficient conditions for consensus are presented and the consensus protocol accounting for actuator saturation is developed. Then, by combining adaptive controller and PD controller together, we design a protocol for the heterogeneous system with unknown parameters (in the nonlinear EL dynamics). Based on graph theory, Lyapunov theory and Barbalat's Lemma, the stability of the controllers is proved. Simulation results are also provided to illustrate the effectiveness of the obtained results.  相似文献   

9.
In this paper, the leader-following bipartite consensus is investigated for a group of uncertain multiple Euler–Lagrange systems with disturbances. An innovative adaptive distributed observer is developed without requiring that followers surely acquire the leader’s auxiliary state and system matrix. A directed signed network satisfying the principle of structural balance is exploited to describe the interaction among agents. Then a novel bipartite consensus control protocol is proposed to solve the bipartite consensus problem of multiple Euler–Lagrange systems. The theoretical proof is provided via constructing a Lyapunov function and applying Barbalat lemma to analyze the convergence problem. Finally, a numerical simulation is utilized to demonstrate the effectiveness of proposed method.  相似文献   

10.
This paper considers the couple-group consensus problem for multi-agent networks with fixed and directed communication topology, where all agents are described by discrete-time second-order dynamics. Consensus protocol is designed such that some agents in a network reach a consistent value, while other agents reach another consistent value. The convergence of the system matrix is discussed based on the tools from matrix theory. An algebraic condition is established to guarantee couple-group consensus. Moreover, for a given communication topology, a theorem is derived on how to select proper control parameters and sampling period for couple-group consensus to be reached. Finally, simulation examples are presented to validate the effectiveness of the theoretical results.  相似文献   

11.
This paper considers the finite-time bipartite consensus problem governed by linear multiagent systems subject to input saturation under directed interaction topology. Due to the existence of input saturation, the dynamic performance of linear multiagent systems degrades significantly. For the improvement of the dynamic performance of systems, a dynamic gain scheduling control approach is proposed to design a dynamic Laplacian-like feedback controller, which can be obtained from the analytical solution of a parametric Lyapunov equation. Suppose that each agent is asymptotically null controllable with bounded control, and that the corresponding interaction topology of the signed directed graph with a spanning tree is structurally balanced. Then the dynamic Laplacian-like feedback control can ensure that linear multiagent systems will achieve the finite time bipartite consensus. The dynamic gain scheduling control can better improve the bipartite consensus performance of the linear multiagent systems than the static gain scheduling control. Finally, two examples are provided to show the effectiveness of the proposed control design method.  相似文献   

12.
This paper focuses on designing a leader-following event-triggered control scheme for a category of multi-agent systems with nonlinear dynamics and signed graph topology. First, an event-triggered controller is proposed for each agent to achieve fixed-time bipartite consensus. Then, it is shown that the Zeno-behavior is rejected in the proposed algorithm. To avoid intensive chattering due to the discontinuous controller, the control protocol is improved by estimating the sign function. Moreover, a triggering function is proposed which avoids continuous communication in the event-based strategy. Finally, numerical simulations are given to show the accuracy of the theoretical results.  相似文献   

13.
The ability to ensure the desired performance of the cooperative-antagonistic multi-agent networks (MANs) in the presence of communication constraints is an important task in many applications of real systems. In this paper, under the proposed event-triggered condition (ETC), different types of consensus are obtained under different network topology. We concentrates on the event-based bipartite consensus. It is shown that under the proposed ETC (i) the addressed cooperative-antagonistic network with arbitrary communication delays reaches bipartite consensus provided that the network is balanced; (ii) the network model reaches zero if the network is unbalanced. Further, to avoid the continuously verifying the triggering condition, a self-triggered algorithm is proposed for realizing the bipartite consensus of the network model. A numerical example is given to illustrate the effectiveness of the theoretical results.  相似文献   

14.
This paper address the distributed bipartite consensus problem of multi-agent systems (MASs) under undirected and directed topologies with dynamic event-triggered (DET) mechanism. The relationship among agents not only collaborative interaction but also competitive interaction are taken into account. A novel DET control protocol is raised with internal dynamic variables to guarantee that each agent can reach the bipartite consensus. Compared with the existing static triggering laws, the introduced DET strategy can significantly enlarge the interval time between two triggering instants. In addition, continuous information transmission in either controller updating or between agent and its neighbors is not demanded, which implies that the communication frequency can be extremely decreased. It is also proven that Zeno behavior does not occur. Finally, two numerical examples verify the validity of the presented theoretical results.  相似文献   

15.
This paper is dedicated to the stochastic bipartite consensus issue of discrete-time multi-agent systems subject to additive/multiplicative noise over antagonistic network, where a stochastic approximation time-varying gain is utilized for noise attenuation. The antagonistic information is characterized by a signed graph. We first show that the semi-decomposition approach, combining with Martingale convergence theorem, suffices to assure the bipartite consensus of the agents that are disturbed by additive noise. For multiplicative noise, we turn to the tool from Lyapunov-based technique to guarantee the boundedness of agents’ states. Based on it, the bipartite consensus with multiplicative noise can be achieved. It is found that the constant stochastic approximation control gain is inapplicable for the bipartite consensus with multiplicative noise. Moreover, the convergence rate of stochastic MASs with communication noise and antagonistic exchange is explicitly characterized, which has a close relationship with the stochastic approximation gain. Finally, we verify the obtained theoretical results via a numerical example.  相似文献   

16.
This paper investigates the problem of identifying the interaction geometry of a set of agents, whose collective goal are to achieve consensus under an agreement protocol. By classifying agents into different subsets based on their behavior, as well as introducing the so-called input and output agents, a relationship between the transfer function matrix and the identifiability of system parameters is established. Specifically, two cases are considered. If the set of input agents coincides with the set of output agents, the number of edges in the input agent set, in the complement of input agent set, and between these two sets can be uniquely identified. Thus, the search space of feasible graphs becomes much smaller. The problem can be solved in polynomial time, and an algorithm is provided. Moreover, if all the agents in the system are output agents, parameters of the system can be uniquely identified, and an algebraic method is given to exactly recover the graph topology. A numerical example illustrates the effectiveness of the proposed algorithm.  相似文献   

17.
This paper addresses the group consensus problem of second-order nonlinear multi-agent systems through leader-following approach and pinning control. The network topology is assumed to be directed and weakly connected. The pinning consensus protocol is designed according to the agent property, that is, the inter-act agent and the intra-act agent. Some consensus criteria are proposed to guarantee that the agents asymptotically follow the virtual leader in each group, while agents in different groups behave independently. Numerical example is also provided to demonstrate the effectiveness of the theoretical analysis.  相似文献   

18.
In this paper, the scaled consensus of resource-limited multi-agent systems with second-order integrator dynamics and undirected topologies is investigated. In order to reduce bandwidth and computation requirements, a scaled consensus protocol based on periodic edge-event driven control is proposed. It is proven that all the agents could converge to a scaled consensus state while the interaction topology is connected. Moreover, a self-triggered scheme is proposed so as to further reduce communication times between agents. Notably, the event-detecting period is introduced so that Zeno behavior could be excluded in our model. Finally, simulations are given to demonstrate the effectiveness of our theoretical results.  相似文献   

19.
This paper studies the leader–follower consensus problem of second-order multi-agent dynamical systems with fixed and stochastic switching topologies in a sampled-data setting. A distributed linear consensus protocol is designed to track an active leader, where the current position information of neighbor agents and self-velocity data are utilized. A necessary and sufficient condition is established under fixed and directed topology for reaching consensus, which depends on the sampling period and control gain parameters. A sufficient condition is obtained under the Markov switching topology case. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results.  相似文献   

20.
This paper mainly investigates the event-triggered tracking control for couple-group multi-agent systems in a disturbance environment, where the topology of the agents is switching. Consensus protocol is designed for the case that some agents reach a consistent value, while the other agents reach another consistent value. Then, event-triggered control laws are designed to reduce the frequency of individual actuation updating for discrete-time agent dynamics. Moreover, by applying the Lyapunov function method, a sufficient condition of couple-group consensus is established in terms of a matrix inequality when the communication topology is switching. Finally, simulation examples are given to demonstrate the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号