首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper concerns the simultaneous fault detection and control (SFDC) problem for a class of nonlinear stochastic switched systems with time-varying state delay and parameter uncertainties. The switching signal of detector/controller unit (DCU) is assumed to be with switching delay, which results in the asynchronous switching between the subsystems and DCU. By constructing a switching strategy depending on the state and switching delays, new sufficient conditions expressed by a set of linear matrix inequalities (LMIs) is derived to design DCU gains. This problem is formulated as an H optimization problem and both mean square exponential stability and fault detection of augmented system are considered. A numerical example is finally exploited to verify the effectiveness and potential of the achieved scheme.  相似文献   

2.
This paper is concerned with the event-based fault detection for the networked systems with communication delay and nonlinear perturbation. We propose an event-triggered scheme, which has some advantages over existing ones. The sensor data is transmitted only when the specified event condition involving the sampled measurements of the plant is violated. An event-based fault detection model is firstly constructed by taking the effect of event-triggered scheme and the network transmission delay into consideration. The main purpose of this paper is to design an event-based fault detection filter such that, for all unknown input, communication delay and nonlinear perturbation, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions for the existence of the desired fault detection filter are established in terms of linear matrix inequalities. Based on these conditions, the explicit expression is given for the designed fault detection filter parameters. A numerical example is employed to illustrate the advantage of the introduced event-triggered scheme and the effectiveness of the proposed method.  相似文献   

3.
Robust fault detection for a class of nonlinear time-delay systems   总被引:1,自引:0,他引:1  
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. Firstly, a reference residual model is introduced to formulate the robust fault detection filter design problem as an H model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H optimization control technique, the existence conditions of the robust fault detection filter for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.  相似文献   

4.
This paper investigates the problem of event-triggered fault detection filter design for nonlinear networked control systems with both sensor faults and process faults. First, Takagi–Sugeno (T–S) fuzzy model is utilized to represent the nonlinear systems with faults and disturbances. Second, a discrete event-triggered communication scheme is proposed to reduce the utilization of limited network bandwidth between filter and original system. At the same time, considering network-induced delays and event-triggered scheme, a novel T–S fuzzy fault detection filter is constructed to generate a residual signal, which has nonsynchronous premise variables with the original T–S fuzzy system. Then, the fuzzy Lyapunov functional based approach and the reciprocally convex approach are developed such that the obtained sufficient conditions ensure that the fuzzy fault detection system is asymptotically stable with H performance and is less conservative. All the conditions are given in terms of linear matrix inequalities (LMIs), which can be solved by LMI tools in MATLAB environment. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed results.  相似文献   

5.
The paper investigates the fault detection problem for a class of nonlinear networked control systems with both communication constraints and random transmission delays. The access status of the sensors is governed by a stochastic event, which is modeled as a Markov chain taking matrix values in a certain set. The main task of this paper is to design a mode-dependent fault detection filter, such that for Markov sensors assignment, random network-induced delays and the unknown input signal, the error between the fault and the residual signal is minimized. And the resulting fault detection dynamics is formulated as an HH filtering problem of a Markov jump system. The linear matrix inequality-based sufficient conditions for the existence of the fault detection filter are obtained. Finally, two examples are given to show the effectiveness of the developed method.  相似文献   

6.
The purpose of fault diagnosis of stochastic distribution control (SDC) systems is to use the measured input and the system output probability density functions (PDFs) to obtain the fault information of the SDC system. When the target PDF is known, the purpose of fault tolerant control of stochastic distribution control system is to make the output PDF still track the given distribution using the fault tolerant controller. However, in practice, time delay may exist in the data (or image) processing, the modeling and transmission phases. When time delay is not considered, the effectiveness of the fault detection, diagnosis and fault tolerant control of stochastic distribution systems will be reduced. In this paper, the rational square-root B-spline is used to approach the output probability density function. In order to diagnose the fault in the dynamic part of such systems, it is then followed by the novel design of a nonlinear neural network observer-based fault diagnosis algorithm. The time delay term will be deleted in the stability proof of the observation error dynamic system. Based on the fault diagnosis information, a new fault tolerant controller based on PI tracking control is designed to make the post-fault probability density function still track the given distribution, which is dependent of the time delay term. Finally, simulations for the particle distribution control problem are given to show the effectiveness of the proposed approach.  相似文献   

7.
This paper investigates the mean-square filtering problem for a linear time delay systems with Gaussian white noises. The obtained solution contains a sliding mode term, signum of the innovations process. It is demonstrated that the estimate produced by the designed filter generates the mean-square estimate, which has the same minimum estimation-error variance as the best estimate given by the classical Kalman–Bucy filter. The theoretical result is applied to an illustrative example: the tryptophan operon of E. coli, verifying the performance of the designed filter. It is demonstrated that the estimates produced by the designed sliding-mode mean-square filter and the Kalman–Bucy filter yield the same estimation-error variance. Simulation graphs demonstrate the better performance of the designed sliding-mode filter and show the potential of the proposed new filter.  相似文献   

8.
In this paper, the fault detection filter (FDF) design problem based on a dynamic event-triggered mechanism (DETM) is investigated for discrete-time systems with signal quantization and sensor nonlinearity. In order to conserve the limited network resources, a newly event-triggered mechanism with dynamic threshold is adopted to reduce the number of transmitted data through network more effectively. With the consideration of DETM, signal quantization and sensor nonlinearity, a fault detection filter is constructed to achieve the robustly asymptotic stability of established model with expected fault detection objective. In addition, by influence of DETM, external interference and quantization errors, a zonotopic residual evaluation mechanism is constructed to detect the occurring fault of plant. Finally, a practical example is provided to illustrate the effectiveness of proposed design approach.  相似文献   

9.
A fault tolerant control scheme for actuator and sensor faults is proposed for a tilt-rotor unmanned aerial vehicle (UAV) system. The tilt-rotor UAV has a vertically take-off and landing (VTOL) capability like a helicopter during the take-off & landing while it could cruise with a high speed as a conventional airplane flight mode. A dual system in the flight control computer (FCC) and the sensor is proposed in this study. To achieve a high reliability, a fault tolerant flight control system is required for the case of actuator or sensor fault. For the actuator fault, the fault tolerant control scheme based on model error control synthesis is presented. A designed fault tolerant control scheme does not require system identification process and it provides an effective reconfigurability without fault detection and isolation (FDI) process. For the sensor fault, the fault tolerant federated Kalman filter is designed for the tilt-rotor UAV system. An FDI algorithm is applied to the federated Kalman filter in order to improve the accuracy of the state estimation even when the sensor fails. For a linearized six-degree-of-freedom linear model and nonlinear model of the tilt-rotor UAV, numerical simulation and process-in-the-loop simulation (PILS) are performed to demonstrate the performance of the proposed fault tolerant control scheme.  相似文献   

10.
In this paper, fault detection and isolation (FDI) in linear uncertain dynamic systems is addressed. The main contributions consist of the formulation of the FDI problem as a filter-based multi-objective optimization problem and the study of the tools used for the solution. The design objectives are formulated in terms of H, H- and generalized H2 performance specifications as well as regional constraints on filter poles. The problem is solved using linear matrix inequality (LMI) and generalized structured singular value (μg) techniques. Special design features are illustrated through a simulation example and experimental results from a controlled hydraulic process are provided to demonstrate the potential of the proposed procedure.  相似文献   

11.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

12.
In this paper, the stability problem of discrete-time systems with time-varying delay is considered. Some new stability criteria are derived by using a switching technique. Compared with the Lyapunov–Krasovskii functional (LKF) approach, the method used in this paper has two features. First, a switched model, which is equivalent to the original system and contains more delay information, is introduced. It means that the criteria obtained by using the LKF method can be regarded as stability criteria for the switched system under arbitrary switching. Second, when the switching signal is known, the stability problem for the switched model under constrained switching is considered and piecewise LKFs are adopted to obtain stability criteria. Since constrained switching is less conservative than arbitrary switching if the switching signal is known, one can know that the obtained results in this paper are less conservative than some existing ones. Two examples are given to illustrate the effectiveness of the obtained results.  相似文献   

13.
In this paper, the event-triggered non-fragile H fault detection filter is designed for a class of discrete-time nonlinear systems subject to time-varying delays and channel fadings. The Lth Rice fading model is utilized to reflect the actual received measurement signals, and its channel coefficients own arbitrary probability density functions on interval [0,1]. The event-based filter is constructed to reduce unnecessary data transmissions in the communication channel, which only updates the measurement signal to the filter when the prespecified “event” is triggered. Multiplicative gain variations are utilized to describe the phenomenon of parameter variations in actual implementation of the filter. Based on Lyapunov stability theory, stochastic analysis technology along with linear matrix inequalities (LMIs) skills, sufficient conditions for the existence of the non-fragile fault detection filter are obtained which make the filtering error system stochastically stable and satisfy the H constraint. The gains of the filter can be calculated out by solving the feasible solution to a certain LMI. A simulation example is given to show the effectiveness of the proposed method.  相似文献   

14.
In this paper, the fault detection problem is studied in finite frequency domain for constrained networked systems under multi-packet transmission. The considered transmission mechanism is that only one packet including parts of the measured information can be transmitted through the communication channel and their accessing is scheduled by a designed stochastic protocol. Then by virtues of the introduced performance indices in finite frequency domain, a novel effective fault detection scheme is presented, in which the fault detection filters completing the task with partially available measurements are designed to make sure that the residual is sensitive to the reference input and the fault in faulty cases and robust to the reference input in fault-free case. Further, convex conditions in terms of time-domain inequalities are developed to handle the proposed fault detection scheme. The theoretical results are validated by the simulation to detect the sensor fault on a lateral-directional aerodynamic model.  相似文献   

15.
In this paper, a decentralized asymptotic fault tolerant control system is proposed for near space vehicle (NSV) attitude dynamics. First, NSV reentry mode is described, and the actuator failure model is developed whose behavior is described by high-order dynamics. Next, the multi-model based fault diagnosis and identification (FDI) algorithm is proposed for high order actuator dynamics, which can accurately diagnose and identify the fault in short time. Based on sliding mode, command filter, and backstepping technique, using information of FDI, a constrained fault tolerant control (FTC) is designed for reentry NSV. Finally, simulation results are given to demonstrate the effectiveness and potential of the proposed FTC scheme.  相似文献   

16.
A novel interval observer filtering-based fault diagnosis method for linear discrete-time systems with dual uncertainties is proposed to detect actuator faults. The idea of minimization is adopted to design a fault-free state estimator by merging unknown but bounded and Gaussian disturbances and noises according to the signal average power principle. Using a fault-free state interval and measurement residual of the system, a fault detection indicator is designed based on the residual probability ratio, to achieve dynamic fault detection, isolation and identification. Finally, various simulation examples are provided to demonstrate the accuracy and effectiveness of the proposed method.  相似文献   

17.
18.
This paper investigates the problem of robust fault detection for a class of discrete-time nonlinear systems, which are represented by Takagi–Sugeno (T–S) fuzzy affine dynamic models with norm-bounded uncertainties. The objective is to design an admissible fault detection filter guaranteeing the asymptotic stability of the resulting residual system with prescribed performances. It is assumed that the plant premise variables, which are often the state variables or their functions, are not measurable so that the fault detection filter implementation with state-space partition may not be synchronized with the state trajectories of the plant. Based on a piecewise quadratic Lyapunov function combined with S-procedure and some matrix inequality convexification techniques, the results are formulated in the form of linear matrix inequalities. Finally, a simulation example is provided to illustrate the effectiveness of the proposed approach.  相似文献   

19.
Detection and estimation of abnormalities for distributed parameter system (DPS) have wide applications in industry, e.g., battery thermal fault diagnosis, quality monitoring of hot-rolled strip laminar cooling process. In this paper, the abnormal spatio-temporal (S-T) source detection and estimation problem for a linear unstable DPS is first studied. The proposed methodology consists of two steps: first, an abnormality detection filter (ADF) which generates a residual signal for abnormality detection in the time domain is constructed using pointwise measurement; Then, an adaptive Luenberger-type PDE observer including an adaptive estimation algorithm is designed and triggered only when an alarm raises from the ADF. Theoretic analysis based on the spatial domain decomposition approach is presented to show the convergence of the estimation errors. Finally, an illustrative example is presented to show the performance of the proposed method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号