首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper mainly investigates the fixed-time synchronization of memristor-based fuzzy cellular neural network (MFCNN) with time-varying delay. By utilizing differential inclusion, set-valued map theory, the definitions of finite-time and fixed-time stability, we convert the fixed-time synchronization control of the drive-response MFCNN into the equivalent fixed-time stability problem of the error system between the drive-response systems. Some novel sufficient conditions are derived to guarantee the fixed-time synchronization of the drive-response MFCNN based on a simple Lyapunov function and a nonlinear feedback controller. Meanwhile, the settling time can be estimated by simple calculations. Furthermore, these fixed-time synchronization criteria here are easy to validate and extend to the MFCNN without time-varying delay and general memristor-based neural networks. Finally, three numerical examples are given to illustrate the correctness of the main results.  相似文献   

2.
Although the drive-response synchronization problem of memristive recurrent neural networks (MRNNs) has been widely investigated, all the existing results are based on the assumption that the parameters of the drive system are known in prior, which are difficult to implement in real-life applications. In the present paper, a Stop and Go adaptive strategy is proposed to investigate the synchronization control of chaotic delayed MRNNs with unknown memristive synaptic weights. Firstly, by defining a series of measurable logical switching signals, a switched response system is constructed. Subsequently, by utilizing the logical switching signals, several suitable parameter update laws are proposed, then some different adaptive controllers are devised to guarantee the synchronization of unknown MRNNs. Since the parameter update laws are weighted by the logical switching signals, they will work or stop automatically with the switch of the unknown weights of drive system. Finally, two numerical examples with their computer simulations are provided to illustrate the effectiveness of the proposed adaptive synchronization schemes.  相似文献   

3.
In this article, a novel synchronization scheme is proposed to achieve hybrid modified function projective synchronization (HMFPS) in two different dimensional complex nonlinear systems with fully unknown parameters. In the complex space, the response system are asymptotically synchronized up to the different order’s drive system by the state transformation with a scaling function matrix, and all of unknown parameters in both drive and response systems are achieved to be identified. Based on the Lyapunov stability theory, an adaptive controller and updated laws of parameters are developed. Respectively on the ways of increased order and reduced order, the corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.  相似文献   

4.
This paper investigates the global dissipativity and quasi-synchronization of asynchronous updating fractional-order memristor-based neural networks (AUFMNNs) via interval matrix method. First, a new class of FMNNs named AUFMNNs is proposed for the first time, in which the switching jumps are asymmetric. In other words, each memristive connection weight is updated based on its own channel and hence the number of the subsystems increases significantly from 2n to 22n2. Under the framework of fractional-order differential inclusions, the proposed AUFMNNs can be regarded as a system with interval parameters. Then, the global dissipativity criterion is established by constructing appropriate Lyapunov function in combination with the estimates of 2-norm for interval matrices and some fractional-order differential inequalities. In addition, for drive-response AUFMNNs with mismatched parameters, the problem of quasi-synchronization is explored via linear state feedback control. It has been shown that complete synchronization between two AUFMNNs cannot be achieved via linear feedback control and that the synchronization error bound can be controlled within a relatively small level by selecting suitable control parameters. Finally, three numerical examples are given to demonstrate the effectiveness and the improvement of the obtained results.  相似文献   

5.
This paper deals with the function projective synchronization problem of two different chaotic systems with unknown and perturbed parameters. The parameter perturbations are assumed to appear in both drive and response systems, which perturbed about the nominal parameter values. A new robust function projective synchronization method is proposed, which is able to overcome random uncertainties of all model parameters. Corresponding numerical simulations are performed to verify and illustrate the analytical results.  相似文献   

6.
The computational complexity of the numerical simulation of fractional chaotic system and its synchronization control is O(N2) compared with O(N) for integer chaotic system, where N is step number and O is the computational complexity. In this paper, we propose optimizing methods to solve fractional chaotic systems, including equal-weight memory principle, improved equal-weight memory principle, chaotic combination and fractional chaotic precomputing operator. Numerical examples show that the combination of these algorithms can simulate fractional chaotic system and synchronize the fractional master and slave systems accurately. The presented algorithms for simulation and synchronization of fractional chaotic system are up to 1.82 and 1.75 times faster than the original implementation respectively.  相似文献   

7.
This paper studies drive-response synchronization in fractional-order memristive neural networks (FMNNs) with switching jumps mismatch. A comparison theorem for fractional-order systems with variable order is provided first. Theories of fractional order Filippov differential inclusions are used to treat FMNNs because the parameters of FMNNs are state dependent and the FMNNs has discontinuous right hand sides. Based on Laplace transform and linear feedback control, some lag quasi-synchronization conditions are obtained with variable order α: 0?<?α?<?1 and 1?<?α?<?2. The error level is estimated and the larger synchronization regain is discussed. Finally, two numerical examples are presented to illustrate the effectiveness of our proposed theorems.  相似文献   

8.
Based on the idea of tracking control and stability theory of fractional-order systems, a novel synchronization approach for fractional order chaotic systems is proposed. We prove that the synchronization between drive system and response system with different fractional order q can be achieved, and the synchronization between different fractional-order chaotic systems with different fractional order q can be achieved. Two examples are used to illustrate the effectiveness of the proposed synchronization method. Numerical simulations coincide with the theoretical analysis.  相似文献   

9.
By only designing the internal coupling, quasi synchronization of heterogeneous complex networks coupled by N nonidentical Duffing-type oscillators without any external controller is investigated in this paper. To achieve quasi synchronization, the average of states of all nodes is designed as the virtual target. Heterogeneous complex networks with two kinds of nonlinear node dynamics are analyzed firstly. Some sufficient conditions on quasi synchronization are obtained without designing any external controller. Quasi synchronization means that the states of all nonidentical nodes will keep a bounded error with the virtual target. Then the heterogeneous complex network with impulsive coupling which means the network only has coupling at some discrete impulsive instants, is further discussed. Some sufficient conditions on heterogeneous complex network with impulsive coupling are derived. Based on these results, heterogeneous complex network can still reach quasi synchronization even if its nodes are only coupled at discrete impulsive instants. Finally, two examples are provided to verify the theoretical results.  相似文献   

10.
The chaotic behaviors in the fractional order unified system are numerically investigated. By utilizing the fractional calculus techniques, we found that chaos exists in the fractional order unified system with order less than 3. The lowest order we found to have chaos in this system is 2.76. Chaos synchronization of the fractional order unified system is theoretically and numerically studied using the one-way coupling method. The suitable conditions for achieving synchronization of the fractional order differential system are derived by using the Laplace transform theory. It is noticed that the time required for achieving synchronization of the drive system and the response system and the synchronization effect sensitively depend on the coupling strength. Numerical simulations are performed to verify the theoretical analysis.  相似文献   

11.
This paper mainly concerns N-step off-line suboptimal predictive controller design for discrete nonhomogeneous Markov jump systems, in which the Markov chains are time-varying transition probabilities matrix modeled as a polytope. The design procedure is divided into N-step, more precisely, the first is to design the Nth step when the changes of Euclidean form of mode-dependent feedback law between the Nth and the (N+1)th asymptotically stable mode-dependent ellipsoids are less than the given accuracy. Then the N  th asymptotically stable mode-dependent invariant ellipsoid is defined. In the previous (N−1)(N1) steps, an off-line mode-dependent predictive controller is designed to drive the state to this small area including the origin. Compared with on-line MPC algorithm, the computation time is dramatically reduced while the dynamic performance of controller is comparable. One numerical example is presented to illustrate the validity of the developed results.  相似文献   

12.
This paper addresses the flow control design of a connection-oriented communication network from the robust control theory perspective. Network is modelled as a nth order discrete system whose first order model is obtained using the two-time scale property associated with the process. The proposed scheme is characterised by an equivalent control based discrete sliding mode design for the first order model which is applied to nth order systems through aggregation. Besides its design simplicity, the proposed method exhibits finite time convergence property for the states while applied to the full order system emulating the characteristics of terminal sliding mode in a certain way. Simulation results via Matlab and ns-2 validate the efficacy of the proposed algorithm as an effective flow controller for connection-oriented networks.  相似文献   

13.
By using the Razumikhin-type technique, for stochastic discrete-time delay systems, this paper establishes the discrete Razumikhin-type theorems on the pth moment stability, the global pth moment stability and the pth moment exponential stability, respectively. The almost sure exponential stability is also investigated by using the pth moment exponential stability and the Borel–Cantelli lemma. As the applications of t he established theorems, stability of a special class of stochastic discrete-time delay systems, synchronization of the stochastic discrete-time delay dynamical networks and stabilization of a stochastic discrete-time linear delay time invariant system are examined.  相似文献   

14.
In this paper, a sliding-mode approach is proposed for exponential H synchronization problem of a class of master–slave time-delay systems with both discrete and distributed time-delays, norm-bounded nonlinear uncertainties and Markovian switching parameters. Using an appropriate Lyapunov–Krasovskii functional, some delay-dependent sufficient conditions and a synchronization law, which include the master–slave parameters are established for designing a delay-dependent mode-dependent sliding mode exponential H synchronization control law in terms of linear matrix inequalities. The controller guarantees the H synchronization of the two coupled master and slave systems regardless of their initial states. Two numerical examples are given to show the effectiveness of the method.  相似文献   

15.
A method is presented for constructing a nonreduced observer for a finite dimensional linear system. The systems considered are nth order, time-invariant or time-varying forced linear systems which are assumed to be bounded and uniformly completely state reconstructible. The observer dynamics are derived from an optimal estimation formulation which is related to the concept of observability. The cost functional used in this formulation includes a parameter which determines the relative weighting of the system output and the estimate of the initial system state. The result is a practical method of estimating the state of a linear system from noiseless measurements of the input and output. The results are also of theoretical significance in that a direct connection between reconstructibility and the existence of observers is established.  相似文献   

16.
This paper considers the lag projective synchronization of fractional-order delayed chaotic systems. The lag projective synchronization is achieved through the use of comparison principle of linear fractional equation at the presence of time delay. Some sufficient conditions are obtained via a suitable controller. The results show that the slave system can synchronize the past state of the driver up to a scaling factor. Finally, two different structural fractional order delayed chaotic systems are considered in order to examine the effectiveness of the lag projective synchronization. Feasibility of the proposed method is validated through numerical simulations.  相似文献   

17.
《Journal of The Franklin Institute》2019,356(18):11285-11304
In this paper, the problem of exponential synchronization for inertial Cohen–Grossberg neural networks with time delays is studied. According to the concept of synchronization, a controlled response system is constructed to obtain the error systems. First, by introducing a directive Lyapunov functional, a sufficient condition is derived to ascertain the exponential synchronization of the drive and response systems based on feedback control. Moreover, by introducing a variable substitution, a sufficient condition is obtained to ensure the global exponential synchronization for the systems. Two sufficient conditions are feasible for the global exponential synchronization of the drive and response systems, and complement each other. Finally, the parameters were set for numerical simulation, two illustrative examples are provided to show the effectiveness of the obtained theoretical results, and the validity of the model was proved.  相似文献   

18.
This work is devoted to the study of symmetric control systems. It establishes a relation between internal symmetry and external one for a linear invariant control system having n real simple poles. The symmetric stabilization problem is studied using a symmetric feedback gain such that the output control stabilizes the closed-loop system. A necessary and sufficient condition is given to solve this stabilization problem for a symmetric control system (A,B,C) and a generalized symmetric control system (E,A,B,C).  相似文献   

19.
Traditionally, recommender systems for the web deal with applications that have two dimensions, users and items. Based on access data that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a multidimensional approach, called DaVI (Dimensions as Virtual Items), that consists in inserting contextual and background information as new user–item pairs. The main advantage of this approach is that it can be applied in combination with several existing two-dimensional recommendation algorithms. To evaluate its effectiveness, we used the DaVI approach with two different top-N recommender algorithms, Item-based Collaborative Filtering and Association Rules based, and ran an extensive set of experiments in three different real world data sets. In addition, we have also compared our approach to the previously introduced combined reduction and weight post-filtering approaches. The empirical results strongly indicate that our approach enables the application of existing two-dimensional recommendation algorithms in multidimensional data, exploiting the useful information of these data to improve the predictive ability of top-N recommender systems.  相似文献   

20.
This paper concerns the exponential synchronization problem of stochastic complex networks with multiple weights (SCNMW). By the method of network split, SCNMW can be modelled as stochastic coupled systems driven by Brownian motion. By combining graph theory, Lyapunov stability theory and state feedback control technique, drive-response synchronization criteria of SCNMW have been obtained. Two kinds of exponential synchronization criteria are obtained, one is given with Lyapunov functions of vertex systems, and the other is shown with the coefficients of SCNMW. The obtained synchronization principles are closely related to the coupling strength of multiple sub-networks and the intensity of noise perturbation. Finally, a numerical example with some simulations is presented to illustrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号