首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

2.
In this study, the problem of observer-based control for a class of nonlinear systems using Takagi-Sugeno (T-S) fuzzy models is investigated. The observer-based model predictive event-triggered fuzzy reset controller is constructed by a T-S fuzzy state observer, an event-triggered fuzzy reset controller, and a model predictive mechanism. First, the proposed controller utilizes the T-S fuzzy model and is constructed based on state observations and discrete sampling output, which can greatly reduce the occupation of communication resources. Then, the model predictive strategy for reset law design is designed in this paper. With a reasonable reset of the controller state at certain instants, the performance of the reset control systems is improved. Finally, the validity of the proposed method is illustrated by simulation. The merits of the proposed controller in improving transient performance and reducing the communication occupation are demonstrated by comparing its results with the output feedback fuzzy controller and the first-order fuzzy reset controller.  相似文献   

3.
Disturbance observer-based control allows to compensate unknown inputs, however, in most cases, requiring their integer-order differentiability. In this paper, a novel disturbance observer-based state feedback controller is proposed to compensate a more general class of fractional-, but not necessarily integer-order, differentiable unknown inputs. The proposed fractional PI-like structure yields precise conditions for feedback gain tuning. Remarkably, the resulting controller rejects non-differentiable disturbances with a smooth controller, guaranteeing robustness, an outstanding features for tracking tasks, under a prescribed practical stability regimen. A comparison to a fractional sliding mode observer is conducted via simulations to highlight the reliability of the proposed scheme.  相似文献   

4.
The problem of observer-based finite-time H control for discrete-time Markov jump systems with time-varying transition probabilities and uncertainties is studied in this paper, in which time-varying transition probabilities are modelled as convex polyhedron, and the parameter uncertainty satisfies norm-bounded. First of all, a Luenberger observer is designed to measure the system state. Then, observer-based controller is constructed to ensure the stochastic finite-time boundedness of the resulting closed-loop system with an H performance. Furthermore, sufficient conditions are derived in light of linear matrix inequalities. In the end, the flexibility and applicability of the developed methods are demonstrated by two illustrative examples.  相似文献   

5.
The observer-based feedback control for the two-level bilinear open stochastic quantum system is proposed in this paper. The state of open stochastic quantum system (OSQS) is described in the Cartesian coordinate system. The proposed state observer is designed by using state-dependent differential Riccati equation (SDDRE) and constructed for optimally estimating the state of OSQS from measurement output of the system. The state of observer is continuously updated by the output data of continuous weak measurement (CWM). A Lyapunov Feedback control is designed based on estimated state of the observer for the state transfer of OSQS. An exponential Lyapunov function is chosen to ensure the stability of the system. The observer-based Lyapunov feedback control (OLFC) strategy is developed according to the stochastic Lyapunov stability theorem. The numerical simulation results verify the achievability of the proposed OLFC strategy in terms of state estimation and state transfer of OSQS. Numerical simulations demonstrate that the observer tracks the state of system asymptotically with minimum error of ± 3%. The proposed OLFC has the ability to move the state of OSQS from arbitrary initial state to the final target eigenstate with high fidelity ≥ 90%.  相似文献   

6.
In this paper, the problem of output feedback robust H control for spacecraft rendezvous system with parameter uncertainties, disturbances and input saturation is investigated. Firstly, a full-order state observer is designed to reconstruct the full state information, whose gain matrix can be obtained by solving the linear matrix inequality (LMI). Subsequently, by combining the parametric Riccati equation approach and gain scheduled technique, an observer-based robust output feedback gain scheduled control scheme is proposed, which can make full use of the limited control capacity and improve the control performance by scheduling the control gain parameter increasingly. Rigorous stability analyses are shown that the designed discrete gain scheduled controller has faster convergence performance and better robustness than static gain controller. Finally, the performance and advantage of the proposed gain scheduled control scheme are demonstrated by numerical simulation.  相似文献   

7.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

8.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

9.
This paper deals with the input–output finite-time stabilization problem for Markovian jump systems (MJSs) with incompletely known transition rates. An observer-based output feedback controller is constructed to study the input–output finite-time stability (IO-FTS) problem. By using the mode-dependent Lyapunov–krasovskii functional method, a sufficient criterion checking the IO-FTS problem is provided. Then, an observer and a corresponding state feedback controller for the individual subsystem are respectively designed to solve the input–output finite-time stabilization problem for the systems. Finally, a numerical example on the mass-spring system model is investigated to bring out the advantages of the control scheme proposed in this paper.  相似文献   

10.
In this paper, a novel on-line observer-based trajectory tracking strategy for leader-follower formation of multiple nonholonomic mobile robots is developed. In the proposed strategy, a leader robot follows a certain trajectory whereas a number of followers track the leader as specified by a formation protocol. Unlike other techniques in the literature, a predefined trajectory is not required, and it can be changed on-line. Moreover, this strategy aims to have a fast transient response without showing undesired overshoots. To achieve this feature, a new observer is introduced. Based on the output of that observer, a control strategy with two components is derived. The first control component is responsible for tracking the desired trajectory, whereas the second control component is used to regulate the robot to its desired steady state position. The stability of the closed loop control system is investigated. Applications of the proposed observer-based controller to different case studies are presented to illustrate the effectiveness, robustness and applicability of the developed technique. To show the superiority of proposed controller, its performance in a trajectory tracking application is compared to that of a Lyapunov-based controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号