首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
By using the Razumikhin-type technique, for stochastic discrete-time delay systems, this paper establishes the discrete Razumikhin-type theorems on the pth moment stability, the global pth moment stability and the pth moment exponential stability, respectively. The almost sure exponential stability is also investigated by using the pth moment exponential stability and the Borel–Cantelli lemma. As the applications of t he established theorems, stability of a special class of stochastic discrete-time delay systems, synchronization of the stochastic discrete-time delay dynamical networks and stabilization of a stochastic discrete-time linear delay time invariant system are examined.  相似文献   

2.
《Journal of The Franklin Institute》2019,356(18):11561-11580
This paper addresses the robust H filter design problem for a class of uncertain fuzzy neutral stochastic system with time-delay through Takagi–Sugeno (T–S) fuzzy model. By constructing an augmented Lyapunov–Krasovskii functional, some novel delay-dependent stability criteria for uncertain fuzzy neutral stochastic system with time varying delay are obtained in terms of linear matrix inequalities. By using the integral inequality in the neutral stochastic setting combined with delay decomposition approach, the H fuzzy filter is designed to guarantee the corresponding filtering error systems robustly asymptotically stable with a specified H performance index. At last, two numerical examples are presented to show the less conservatism than the previous results.  相似文献   

3.
This paper studies the stochastic stability problem for Markovian jump systems with unified uncertain transition rates via multiple integral techniques. The considered transition rates unify some existing ones in a framework, which are more general and practical. A multiple-integral-type Lyapunov–Krasovskii functional (MITLKF) is constructed, which contains more ply of integral terms than some existing ones. In order to obtain a tighter bound of the MITLKF, an auxiliary function-based multiple integral inequality (AFMII) is proposed, which encompasses some existing ones as its special cases. Based on these ingredients, a novel stability condition is derived for Markovian jump systems with the unified uncertain transition rates. The effectiveness of the proposed approach is demonstrated by two examples.  相似文献   

4.
针对几类重要的随机非线性系统, 提出了一些新的概念,发展了一些基本分析工具, 研究了几类控制器的设计问题. 主要成果包括:(1) 针对一类部分动态不可量测的非线性随机系统,引入了随机输入状态稳定(SISS)的概念, 借助于分析概率理论,发展了随机系统改变能量函数方法, 成功地处理了随机微分中的伊藤项,给出了随机非线性串联系统SISS的小增益类条件. (2) 对一类具有SISS随机逆动态的大规模随机非线性系统,给出了分散自适应输出反馈镇定控制器的构造性设计方法. 既解决了实用镇定问题也解决了渐近镇定问题. 在分散控制框架内,给出了处理随机非线性逆动 态的方法. (3) 对一类具有不稳定零动态的随机非线性系统,引入了随机输入状态可镇定的概念,给出了全局输出反馈镇定控制器构造性设计方法. (4) 对一类具有线性增长的不可量测状态的随机非线性系统,针对方差未知的噪声和一般随机输入,引入了广义随机输入状态稳定(GSISS)的概念,分别给出了随机干扰抑制和渐近镇定的输出反馈控制器的构造性设计方法.(5) 对一般的时滞随机非线性系统, 给出了解存在唯一的判定条件,引入了依概率全局(渐近)稳定的概念及相应的判定准则,丰富了随机时滞非线性系统的控制器设计理论. 对一类不确定随机时变时滞系统,构造性地设计出了自适应输出反馈镇定控制器.  相似文献   

5.
This paper studies the finite-time stability and stabilization of linear discrete time-varying stochastic systems with multiplicative noise. Firstly, necessary and sufficient conditions for the finite-time stability are presented via a state transition matrix approach. Secondly, this paper also develops the Lyapunov function method to study the finite-time stability and stabilization of discrete time-varying stochastic systems based on matrix inequalities and linear matrix inequalities (LMIs) so as to Matlab LMI Toolbox can be used.The state transition matrix-based approach to study the finite-time stability of linear discrete time-varying stochastic systems is novel, and its advantage is that the state transition matrix can make full use of the system parameter informations, which can lead to less conservative results. We also use the Lyapunov function method to discuss the finite-time stability and stabilization, which is convenient to be used in practical computations. Finally, three numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   

6.
This paper is concerned with the problem of non-fragile guaranteed cost control (GCC) for networked nonlinear Markov jump systems subject to multiple cyber-attacks, which are characterized by Takagi–Sugeno (T–S) fuzzy model with time-varying delay. Specifically, a variety of cyber-attacks, including deception attacks and Denial-of-Service (DoS) attacks, are considered, which occur in the forward and feedback communication links, respectively. To achieve stochastic stability under guaranteed cost function (GCF), the paper proposes a Lyapunov–Krasovskii (L–K) function approach. The approach derives sufficient conditions for stochastic stability, and obtains non-fragile controller gains and the uniform upper bound of the GCF using linear matrix inequalities (LMIs) technique. Finally, the effectiveness of the proposed algorithm is evaluated by simulation experiment.  相似文献   

7.
In this study, the fixed-time consensus (FDTC) for stochastic multi-agent systems (MASs) with discontinuous inherent dynamics is investigated via quantized control. Firstly, an improved lemma for fixed-time (FDT) stability is derived and several more precise estimations for settling time (SLT) are gained by using certain special functions. Secondly, a more general MAS containing discontinuous inherent dynamics and stochastic perturbations is considered, which is closer to practical life. Thirdly, to overcome the limitation of communication, two kinds of quantized control protocols are designed. Besides, in the light of the graph theory, non-smooth analysis, fixed-time (FDT) stability and stochastic analysis theory, some sufficient conditions are put forward to achieve FDTC of MASs. Finally, the validity of the derived theoretical results is testified by two numerical examples.  相似文献   

8.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

9.
This paper presents a relaxed scheme of fuzzy controller design for continuous-time nonlinear stochastic systems that are constructed by the Takagi–Sugeno (T–S) fuzzy models with multiplicative noises. Through Nonquadratic Lyapunov Functions (NQLF) and Non-Parallel Distributed Compensation (Non-PDC) control law, the less conservative Linear Matrix Inequality (LMI) stabilization conditions on solving fuzzy controllers are derived. Furthermore, in order to study the effects of stochastic behaviors on dynamic systems in real environments, the multiplicative noise term is introduced in the consequent part of fuzzy systems. For decreasing the conservatism of the conventional PDC-based fuzzy control, the NQLF stability synthesis approach is developed in this paper to obtain relaxed stability conditions for T–S fuzzy models with multiplicative noises. Finally, some simulation examples are provided to demonstrate the validity and applicability of the proposed fuzzy controller design approach.  相似文献   

10.
This paper develops new practical stability criteria for continuous-time stochastic nonlinear system with uncertainties and external disturbances. Two cases of the system are considered: the system with state-dependent disturbance and the system with state-independent disturbance. Based on the event-triggered mechanism and Lyapunov function, we establish the input-to-state practical exponential stability in mean square for each case of the system. The obtained results improve some previous works in the literature. Finally, several examples are given to show the effectiveness and practicability of the main results.  相似文献   

11.
This paper presents a stabilizing control for two-dimensional stochastic differential equations. The stability concept in this study is the stability in probability. To ensure such a stability, the control is designed based on the sliding mode technique, and applied to account stochastic systems. This finding has a practical implication—the proposed control can be used to stabilize a real-time automotive electronic throttle valve. The proposed approach is verified by data collected from experiments.  相似文献   

12.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

13.
This paper studies the control problem of uncertain stochastic systems, which takes into account the impact of network attacks. The types of network attacks considered are denial-of-service (DoS) attacks, deception attacks and replay attacks. In order to save network resources and improve communication utilization, the static event-triggered mechanism and adaptive event-triggered mechanism are cited respectively. Firstly, a new Lyapunov-Krasovskii functional is constructed, employing improved Wirtinger-based integral inequality and Jensens inequality, the criteria on stochastic stability in the mean square for uncertain stochastic systems are proposed. Secondly, the design methods of static event-triggered controller and adaptive event-triggered controller are given respectively. Finally, a practical example is given to manifest the effectiveness of the theoretical results.  相似文献   

14.
This paper is concerned with the input-to-state stability (ISS) of impulsive stochastic systems. First, appropriate concepts of stochastic input-to-state stability (SISS) and pth moment input-to-state stability (p-ISS) for the mentioned systems are introduced. Then, we prove that impulsive stochastic systems possessing SISS-Lyapunov functions are uniformly SISS and p-ISS over a certain class of impulse sequences. As a byproduct, a criterion on the uniform global asymptotic stability in probability for the system in isolation (without inputs) is also derived. Finally, we provide a numerical example to illustrate our results.  相似文献   

15.
In this paper, the stability analysis of impulsive discrete-time stochastic BAM neural networks with leakage and mixed time delays is investigated via some novel Lyapunov–Krasoviskii functional terms and effective techniques. For the target model, stochastic disturbances are described by Brownian motion. Then the result is further extended to address the problem of robust stability of uncertain discrete-time BAM neural networks. The conditions obtained here are expressed in terms of Linear Matrix Inequalities (LMIs), which can be easily checked by MATLAB LMI control toolbox. Finally, few numerical examples are presented to substantiate the effectiveness of the derived LMI-based stability conditions.  相似文献   

16.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

17.
This paper investigates the robust output regulation problem for stochastic systems with additive noises. As is known, for the output regulation control problem, a general method is to regard that the system is disturbed by an autonomous exosystem (which is consisted by external disturbances and reference signals), and for the system disturbed by the white noise, the stochastic differential equations (SDEs) should be utilized in modeling, accordingly, a controller with a feedforward regulator is constructed for the stochastic system with an exosystem, which can not only cancel the external disturbance, but also transform the trajectory tracking problem into the stabilization problem; In consideration of the state variables in stochastic systems cannot be measured completely, we embed an observer to the controller, such that the random interference can be suppressed, and the trajectory tracking can be achieved. Based on the stochastic control theory, the criteria of the exponential practical stability in the mean square is presented for the closed-loop system, finally, through tuning the controller parameters, the mean square of the tracking error can converge to an arbitrarily small neighborhood of the origin.  相似文献   

18.
This work concentrates on the control design of interval type-2 (IT2) T–S fuzzy systems under probabilistic saturation constraints. The actual control signals are allowed to exceed some preset thresholds with a certain frequency. Meanwhile, the sensors are governed by the multi-node round-robin scheduling protocol, which permits more than one sensors to transmit their information at every moment. The main objective is to synthesize a fuzzy controller such that the closed-loop system is locally stochastically stable under probabilistic saturated constraints and the multi-node round-robin scheduling protocol. To this end, the probabilistic saturation constraints are characterized by a Bernoulli-distributed stochastic process, and the received state at the controller side is formulated based on an updating rule and a compensation strategy. By constructing new membership functions, a token-dependent control law is subsequently designed. The stability analysis is facilitated by a modified sector condition dealing with the saturation nonlinearities. With suitable selection of initial states, sufficient conditions are derived to achieve the local stochastic stability of the closed-loop IT2 T–S fuzzy system. A larger domain of stochastic stability can be obtained via a searching algorithm. Finally, the proposed method is illustrated via a simulation example.  相似文献   

19.
This paper is denoted to investigating stability in mean of partial variables for stochastic reaction–diffusion equations with Markovian switching (SRDEMS). By transforming the integral of the trajectory with respect to spatial variables as the solution of the stochastic ordinary differential equations with Markovian switching (SODEMS) and using Itô formula, sufficient criteria on uniform stability in mean, asymptotic stability in mean, uniformly asymptotic stability in mean, exponential stability in mean of partial variables for SRDEMS are first derived. An example is presented to illustrate the effectiveness and efficiency of the obtained results.  相似文献   

20.
This paper explores the delay dependent stochastic stabilization of Markovian jump neutral systems (MJNS) which are modeled by fractional Brownian motion(fBm) via a quantized controller. A function Round quantizer is introduced which solves the model uncertainties and the nonlinear part by a uniform operator. Then by structuring a Lyapunov–Krasovskii functional (LKF) and the aid of linear matrix inequalities (LMIs) method, a stochastic stability criterion is achieved. Last, different parameters are selected to simulate the effectiveness of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号