首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a remote state estimation process under an active eavesdropper for cyber-physical system. A smart sensor transmits its local state estimates to a remote estimator over an unreliable network, which is eavesdropped by an adversary. The intelligent adversary can work in passive eavesdropping mode and active jamming mode. An active jamming mode enables the adversary to interfere the data transmission from sensor to estimator, and meanwhile improve the data reception of itself. To protect the transmission data from being wiretapped, the sensor with two antennas injects noise to the eavesdropping link with different power levels. Aiming at minimizing the estimation error covariance and power cost of themselves while maximizing the estimation error covariance of their opponents, a two-player nonzero-sum game is constructed for sensor and active eavesdropper. For an open-loop case, the mixed Nash equilibrium is obtained by solving an one-stage nonzero-sum game. For a long term consideration, a Markov stochastic game is introduced and a Nash Q-learning method is given to find the Nash equilibrium strategies for two players. Numerical results are provided to show the effectiveness of our theoretical conclusions.  相似文献   

2.
In this paper, a security consistent tracking control scheme with event-triggered strategy and sensor attacks is developed for a class of nonlinear multi-agent systems. For the sensor attacks on the system, a security measurement preselector and a state observer are introduced to combat the impact of the attacks and achieve secure state estimation. In addition, command filtering technology is introduced to overcome the “complexity explosion” caused by the use of the backstepping approach. Subsequently, a new dynamic event-triggered strategy is proposed, in which the triggering conditions are no longer constants but can be adjusted in real time according to the adaptive variables, so that the designed event-triggered mechanism has stronger online update ability. The measurement states are only transmitted through the network based on event-triggered conditions. The proposed adaptive backstepping algorithm not only ensures the security of the system under sensor attacks but also saves network resources and ensures the consistent tracking performance of multi-agent systems. The boundedness of all closed-loop signals is proved by Lyapunov stability analysis. Simulation examples show the effectiveness of the control scheme.  相似文献   

3.
In this paper, we consider a malicious attack issue against remote state estimation in cyber-physical systems. Due to the limited energy, the sensor adopts an acknowledgment-based (ACK-based) online power schedule to improve the remote state estimation. However, the feedback channel will also increase the risk of being attacked. The malicious attacker has the ability to intercept the ACK information and modify the ACK signals (ACKs) from the remote estimator. It could induce the sensor to make poor decisions while maintaining the observed data packet acceptance rate to keep the attacker undetected. To maximize the estimation error, the attacker will select appropriate attack times so that the sensor makes bad decisions. The optimal attack strategy based on the true ACKs and the corrosion ACKs is analytically proposed. The optimal attack time to modify the ACKs is the time when the sensor’s tolerance, i.e., the number of consecutive data packet losses allowed, is about to reach the maximum. In addition, such an optimal attack strategy is independent of the system parameters. Numerical simulations are provided to demonstrate the analytical results.  相似文献   

4.
This paper is concerned with a security problem about malicious integrity attacks in state estimation system, in which multiple smart sensors locally measure information and transmit it to a remote fusion estimator though wireless channels. A joint constraint is considered for the attacker behaviour in each channel to keep stealthiness under a residual-based detector on the remote side. In order to degrade the estimator performance, the attacker will maximize the trace of the remote state estimation error covariance which is derived based on Kalman filter theory. It is proved that the optimal linear attack strategy design problem is convex and finally turned into a semi-definite programming problem. In addition, the tendency of attack behaviour on recursive and fixed Kalman filter system is analyzed. Several examples are given to illustrate the theoretical results.  相似文献   

5.
Optimal sensor allocation can substantially reduce the life cycle maintenance costs of engineering systems. Considerable effort has been exerted to model the causal relationship between sensors and faults, but without considering the propagation of fault risk. In this paper, a grey relational analysis (GRA) based quantitative causal diagram (QCD) sensor allocation strategy is proposed that can take account of the influence of the propagation of fault risk. QCD is used to describe both the fault-sensor causal relationship and the fault-to-fault causal relationship. A data-driven-based GRA is applied in QCD to calculate the coefficients of the propagation of fault risk. To achieve an accurate relationship between faults and sensors, an improved quantitative analytic hierarchy process is proposed to calculate the coefficients between faults and sensors that is defined as sensor detectability in this paper. An optimal sensor allocation strategy is then developed using an improved particle swarm optimization (IPSO) algorithm under the constraint on sensor detectability to minimize fault unobservability and total cost. The proposed strategy is demonstrated by a case study on a single-phase inverter system. Compared with two other sensor allocation strategies, the results show that the proposed strategy can obtain the lowest fault unobservability of per unit cost (?0.242) for sensor allocation under the propagation of fault risk.  相似文献   

6.
This paper proposes a design framework of sensor communication by using the stochastic event triggers, which aims at best saving the communication resources. The system to be considered is as follows: a sensor takes measurements of the states of a dynamic process and sends the information to a remote estimator, and the estimator computes the state estimates for the dynamic process. To save communication resources, a set of stochastic event triggers on the measurements are assigned to the sensor. At each sampled time, when no trigger is triggered, the sensor sends nothing to the estimator; when one of them is triggered, the sensor sends the identity code of the corresponding trigger. It is shown that once the estimator receives the identity of the trigger, it is equivalent for the estimator to receiving a measurement from a certain virtual sensor. Based on it, the system performance under the proposed communication is analyzed, and the design of specific models is considered. Examples are presented to demonstrate the proposed communication design.  相似文献   

7.
This paper proposes an improved model based pipeline leak detection and localization method based on compressed sensing (CS) and event-triggered (ET) particle filter (ET-PF). First, the state space model of the pipeline system is established based on the characteristic line method. Then, the CS method is used to preprocess the sensor signals to recover the potentially lost leak information which is caused by the low sampling frequency of the industrial pipeline sensors, and an event based beetle antennae search (BAS) particle filter (BAS-PF) is proposed to improve the accuracy and efficiency of the pipeline state estimation. Finally, a pipeline leak detection and localization method is developed based on the proposed signal processing, and state estimation algorithms, as well as a pipeline partition strategy. Experiment results show that the proposed method can accurately detect and locate the leak of the pipeline system with a localization error of about 1.4%.  相似文献   

8.
A simultaneous estimation of two convective boundary conditions problem of a two-dimensional rectangular fin is proposed by numerical approach. The aim is to estimate the evolution of the distributions of the unknown heat transfer coefficients from the transient temperature histories taken with several sensors inside a two-dimensional fin. The estimation algorithm of this inverse heat conduction problem is based on the iterative regularization method and on the conjugate gradient method. An optimal choice of the vector of the descent parameters is used in this study and shows an increase in the convergence rate. The effects of some parameters (sensor number, position, measurement errors) on the inverse solutions are discussed.  相似文献   

9.
This paper investigates the controller design problem of cyber-physical systems (CPSs) to ensure the reliability and security when actuator faults in physical layers and attacks in cyber layers occur simultaneously. The actuator faults are time-varying, which cover bias fault, outage, loss of effectiveness and stuck. Besides that, some state-dependent cyber attacks are launched in control input commands and system measurement data channels, which may lead state information to the opposite direction. A novel co-design controller scheme is constructed by adopting a new Lyapunov function, Nussbaum-type function, and direct adaptive technique, which may further relax the requirements of actuator/sensor attacks information. It is proven that the states of the closed-loop system asymptotically converge to zero even if actuator faults, actuator attacks and sensor attack are time-varying and co-existing. Finally, simulation results are presented to show the effectiveness of the proposed control method.  相似文献   

10.
This paper studies the asynchronous state fusion estimation problem for multi-sensor networked systems subject to stochastic data packet dropouts. A set of Bernoulli sequences are adopted to describe the random packet losses with different arriving probabilities for different sensor communication channels. The asynchronous sensors considered in this paper can have arbitrary sampling rates and arbitrary initial sampling instants, and may even sample the system non-uniformly. Asynchronous measurements collected within the fusion interval are transformed to the fusion time instant as a combined equivalent measurement. An optimal asynchronous estimation fusion algorithm is then derived based on the transformed equivalent measurement using the recursive form of linear minimum mean squared error (LMMSE) estimator. Cross-correlations between involved random variables are carefully calculated with the stochastic data packet dropouts taken into account. A numerical target tracking example is provided to illustrate the feasibility and effectiveness of the proposed algorithm.  相似文献   

11.
Network security is becoming a prominent issue for the development of information technology, and intelligent network attacks pose great challenges to system security due to its strong concealment. The existence of these attacks threatens the operation process of the complicated control system. Motivated by such a security problem, we study the secure distributed filtering algorithm under a kind of complex data integrity attack which can attack in two forms. We design a detection mechanism based on local outlier factor to distinguish the rightness of exchanged data, which determines whether to fuse the estimates by comparing the local density (LD) of the estimation of each sensor. Such a detection mechanism does not need the sensor to transmit redundant data information, thus greatly saving calculation cost and improving transmission efficiency. Meanwhile, we optimize the distributed filtering algorithm and obtain a suboptimal estimation gain. Finally, we demonstrate a numerical example to verify the availability of the filtering algorithm, and explore the influence of detector parameters on the performance of the estimation system.  相似文献   

12.
In this paper, the centralized security-guaranteed filtering problem is studied for linear time-invariant stochastic systems with multirate-sensor fusion under deception attacks. The underlying system includes a number of sensor nodes with a centralized filter, where each sensor is allowed to be sampled at different rate. A new measurement output model is proposed to characterize both the multiple rates and the deception attacks. By exploiting the lifting technique, the multi-rate sensor system is cast into a single-rate discrete-time system. With a new concept of security level, the aim of this paper is to design a filter such that the filtering error dynamics achieves the prescribed level of the security under deception attacks. By using the stochastic analysis techniques, sufficient conditions are first derived such that the filtering error system is guaranteed to have the desired security level, and then the filter gain is parameterized by using the semi-definite programme method with certain nonlinear constraints. Finally, a numerical simulation example is provided to demonstrate the feasibility of the proposed filtering scheme.  相似文献   

13.
14.
In this paper, we study the problem of remote state estimation on networks with random delays and unavailable packet sequence due to malicious attacks. Two maximum a posteriori (MAP) schemes are proposed to detect the unavailable packet sequence. The first MAP strategy detects the packet sequence using data within a finite time horizon; the second MAP strategy detects the packet sequence by a recursive structure, which effectively reduces the computation time. With the detected packet sequence, we further design a linear minimum mean-squared error (LMMSE) estimation algorithm based on smoothing techniques, rather than using the classic prediction and update structure. A wealth of information contained in the combined measurements is utilized to improve the estimation performance. Finally, the effectiveness of the proposed algorithms is demonstrated by simulation experiments.  相似文献   

15.
In this paper, we present a secure distributed estimation strategy in networked systems. In particular, we consider distributed Kalman filtering as the estimation method and Paillier encryption, which is a partially homomorphic encryption scheme. The proposed strategy protects the confidentiality of the transmitted data within a network. Moreover, it also secures the state estimation computation process. To this end, all the algebraic calculations needed for state estimation in a distributed Kalman filter are performed over the encrypted data. As Paillier encryption only deals with integer data, in general, this, in turn, provides significant quantization error in the computation process associated with the Kalman filter. However, the proposed estimation approach handles quantized data in an efficient way. We provide an optimality and convergence analysis of our proposed method. It is shown that state estimation and a covariance matrix associated with the proposed method remain with a certain small radius of those of a conventional centralized Kalman filter. Simulation results are given to further demonstrate the effectiveness of the proposed scheme.  相似文献   

16.
高明亮 《科技广场》2012,(3):132-134
基于主元分析(PCA)的故障诊断方法是故障诊断领域一个重要研究分支。本文首先介绍了主元分析的理论,然后深入研究了基于主元分析方法的传感器故障检测问题。该方法能够在对测量参数相关性分析的基础上,将传感器测量值所组成的测量空间分解为主元和残差两个子空间,通过传感器实际测量数据与正常数据矩阵在残差子空间投影的比较,对传感器的故障进行检测。最后进行具体仿真,仿真结果表明主元分析法对传感器具有很好的故障检测能力。  相似文献   

17.
18.
In this paper, the event-triggered distributed multi-sensor data fusion algorithm is presented for wireless sensor networks (WSNs) based on a new event-triggered strategy. The threshold of the event is set according to the chi-square distribution that is constructed by the difference of the measurement of the current time and the measurement of the last sampled moment. When the event-triggered decision variable value is larger than the threshold, the event is triggered and the observation is sampled for state estimation. In designing the dynamic event-triggered strategy, we relate the threshold with the quantity in the chi-square distribution table. Therefore, compared to the existed event-triggered algorithms, this novel event-triggered strategy can give the specific sampling/communication rate directly and intuitively. In addition, for the presented distributed fusion in wireless sensor networks, only the measurements in the neighborhood (i.e., the neighbor nodes and the neighbor’s neighbor nodes) of the fusion center are fused so that it can obtain the optimal state estimation under limited energy consumption. A numerical example is used to illustrate the effectiveness of the presented algorithm.  相似文献   

19.
20.
In this paper, the problem about the false data injection attacks on sensors to degrade the state estimation performance in cyber-physical systems(CPSs) is investigated. The attack strategies for unstable systems and stable ones are both designed. For unstable systems, based on the idea of zero dynamics, an unbounded attack strategy is proposed which can drive the state estimation error variations to infinity. The proposed method is more general than existing unbounded attack strategies since it relaxes the requirement for the initial value of the estimation error. For stable systems, it is difficult to bring unbounded impacts on the estimation error variations. Therefore, in this case, an attack strategy with adjustable attack performance which makes the estimation error variations track predesigned target values is proposed. Furthermore, a uniform attack strategy which aims to deteriorate state estimation for both stable systems and unstable ones is derived. Finally, simulations are provided to illustrate the effectiveness of the proposed attack strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号