首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, the problem of stabilization for a class of switched delay systems with polytopic type uncertainties under asynchronous switching is investigated. When the switching of the controllers has a lag to the switching of subsystems, i.e. the switching signal of the switched controller involves delay, parameter-dependent Lyapunov functionals are constructed, which are allowed to increase during the running time of active subsystems with the mismatched controller. Based on the average dwell time method, sufficient conditions for exponential stability are developed for a class of switching signals. Finally, a river pollution control problem is given to demonstrate the feasibility and effectiveness of the proposed design techniques.  相似文献   

2.
This paper is concerned with state feedback stabilization of discrete-time switched singular systems with time-varying delays existing simultaneously in the state, the output and the switching signal of the switched controller. On the basis of equivalent dynamics decomposition and Lyapunov–Krasovskii method, exponential estimates for the response of slow states of the closed-loop subsystems running in asynchronous and synchronous periods are first given. Exponential estimates for the response of fast states are also provided by establishing an analytic equation to solve the fast states and using some algebraic techniques. Then, by employing the obtained exponential estimates and the piecewise Lyapunov function approach with average dwell time (ADT) switching, sufficient conditions for the existence of a class of stabilizing switching signals and state feedback gains are derived, which explicitly depend on upper bounds on the delays and a lower bound on the ADT. Finally, two numerical examples are provided to illustrate the effectiveness of the obtained theoretical results.  相似文献   

3.
This paper investigates the output regulation problem for a class of switched nonlinear systems with at least a feedback incrementally passive subsystem via average dwell time method. First, the output regulation problem for switched nonlinear system via full information feedback is solved. The stabilizing controllers consist of the state feedback controllers and linear output feedback controllers. In some particular cases, it is unnecessary to verify that all the solutions of the switched nonlinear system converge to the bounded steady-state solution, while we only have to verify the regulated outputs converge to zero directly. Second, a dynamic error-feedback stabilizer for each subsystem and a switched internal model whose subsystems all are incrementally passive are designed to solve the output regulation problem for the switched nonlinear system under a composite switching signal with average dwell times. The stabilizer and the internal model are interconnected in a more simple way and allowed to switch asynchronously. Finally, two examples are provided to show the effectiveness of the obtained results.  相似文献   

4.
This paper studies the problems of stability and H∞ model reference tracking performance for a class of asynchronous switched nonlinear systems with uncertain input delay. First, it is assumed switched controller and corresponding piecewise Lyapunov function are unknown but the derivative of piecewise Lyapunov function has a condition; this condition implies that the nominal system (system without input delay and disturbance) is exponentially stable by any switched controller which satisfies this condition. With this assumption, a proper Lyapunov–Krasovskii functional is constructed. By employing this new functional and average dwell time technique, the delay-dependent input-to-state stability criteria are derived under a certain delay bound; in addition, a mechanism which finds the upper bound of input delay is proposed. Finally, a kind of state feedback control law which fulfils condition of aforesaid piecewise Lyapunov function is introduced to guarantee the input-to-state stability and H∞ model reference tracking performance. Simulation examples are presented to demonstrate the efficacy of results.  相似文献   

5.
This paper focuses on an output feedback stabilization problem for a class of switched nonlinear systems in non-strict feedback form under asynchronous switching via sampled-data control. Since the output of the considered systems is measurable only at the sampling instants, an observer is designed with a tunable scaling gain to estimate the state, and then a sampled-data controller is constructed with the sampled estimated state. As a distinctive feature, a merging virtual switching signal is introduced to describe the asynchronous switching generated by detecting the activation of the subsystem. By choosing an appropriate Lyapunov function, it is proved that the constructed controller with dwell time constraint can globally stabilize the considered systems under asynchronous switching. Finally, the effectiveness of the proposed method is illustrated by two examples.  相似文献   

6.
The paper investigates the design of hybrid state observer-based event-triggered controller for switched linear systems subject to quantized input and unknown but bounded additional disturbance and measurement noise. Firstly, by introducing a hybrid state observer and constructing a mode-dependent event-triggered mechanism, we design event-triggered controller for the considered switched linear systems. Then, by modeling the closed-loop system as an augmented asynchronous switched time-delay system, we deal with the asynchronous control problem caused by the switching between two consecutive trigger instants for the switched linear system. Thirdly, based on merging signal technique and multiple Lyapunov functional method, we obtain the sufficient criteria to guarantee the stability of the switched system when the switching signal meets an average dwell time condition, and further establish the hybrid observer-based event-triggered controller gains. Finally, a simulation example illustrates the validity of the results.  相似文献   

7.
This paper investigates the problem of robust H fixed-order filtering for a class of linear parameter-varying (LPV) switched delay systems under asynchronous switching that the system parameter matrices and the time delays are dependent on the real-time measured parameters. The so-called asynchronous switching means that there are time delays between the switching of filters and the switching of system modes. By constructing the parameter-dependent and mode-dependent Lyapunov-Krasovskii functional which is allowed to increase during the running time of active subsystem with the mismatched filter, and using the mode-dependent average dwell time (MDADT) switching method, the sufficient conditions for exponential stability and satisfying a novel weighted H criterion are derived. As there exist couplings between Lyapunov-Krasovskii functional matrices and system parameter matrices, we utilize slack matrices to decouple them. Based on the above results, a suitable weighted H fixed-order filter can be obtained in the form of the parameter linear matrix inequalities (PLMIs). By virtue of approximate basis function and gridding technique, the design of weighted H fixed-order filter can be transformed into the solution of the finite dimensional LMIs. Finally, a numerical example is presented to verify both the effectiveness and the low conservatism of the parameter-dependent and mode-dependent fixed-order filtering method proposed in this paper.  相似文献   

8.
This paper investigates the problem of event-triggered adaptive neural network (NN) control for multi-input multi-output (MIMO) switched nonlinear systems with output and state constraints and non-input-to-state practically stable (ISpS) unmodeled dynamics. A nonlinear mapping is firstly utilized to deal with output and state constraints. Also, by developing a new switching signal with persistent dwell-time (PDT) and a switching dependent dynamic signal, the difficulty caused by some non-ISpS unmodeled dynamics is overcome. Then, a type of switching event-triggering mechanisms (ETMs) and event-triggered adaptive NN controllers of subsystems are designed, which handle the issue of asynchronous switching without requiring any known restriction on maximum asynchronous time. A piecewise constant introduced into this ETM effectively ensures a strict positive lower bound of inter-event times. Zeno behavior is thus ruled out. Finally, by proposing a novel class of switching signals with reset PDT, it is ensured that all output and state constrains are never violated and all signals of the switched closed-loop system are semi-global uniform ultimate boundedness (SGUUB). A two inverted pendulum system and a numerical example are provided for illustrating the applicability and validity of the proposed method.  相似文献   

9.
This paper addresses the event-triggered tracking control design for state-constrained switched nonstrict feedback nonlinear systems. With the help of a time-varying nonlinear shifting function (TVNSF) introduced into the switched nonlinear system, the proposed solution is seen as a unified tool regardless of whether the constraint conditions are state constraints, output constraint, or even no constraint. Also, by allowing the triggering error to vary with the switching signal in time, the negative effects of the mismatch between the individual controller and the subsystem on system performance are trumped. Moreover, by using constructed individual Lyapunov function that depends on the lower bound of the control gain function of individual subsystem, a novel switching signal satisfying the average dwell time (ADT) is provided to ensure the boundedness of all variables in the closed-loop system. Finally, the proposed theory is carried over into a mass-spring-damper system to verify its effectiveness.  相似文献   

10.
In this paper, the global output feedback tracking control is investigated for a class of switched nonlinear systems with time-varying system fault and deferred prescribed performance. The shifting function is introduced to improve the traditional prescribed performance control technique, remove the constraint condition on the initial value, and make the constraint bounds have more alternative forms. To estimate the unmeasured state variables and compensate the system fault, the switched dynamic gain extended state observer is constructed, which relaxes the traditional Lipschitz conditions on the nonlinear functions. Based on the proposed observer, by constructing the new Lyapunov function and using the backstepping method, the global robust output feedback controller is designed to make the output track the reference signal successfully, and after the adjustment time, the tracking error enters into the prescribed set. The stability of the system is analyzed by the average dwell time method. Finally, simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

11.
In this paper, a novel control strategy is proposed for asymptotically stabilizing chained nonholonomic systems with input delay. Firstly, by using the input-state-scaling technique and the static gain control method, the stabilization control problem of such systems is transformed into designing two gain parameters to stabilize a class of generalized feedback systems with state delay. Then, based on the Lyapunov–Krasovskii theorem, the stability analysis of the closed-loop systems is achieved by the appropriate selection of the gain parameters, and the state and output feedback controllers are constructed simultaneously. An illustrative example is also provided to demonstrate the effectiveness of the proposed strategy.  相似文献   

12.
This paper focuses on the problem of semi-global output-feedback stabilization for a class of switched nonlinear time-delay systems in strict-feedback form. A switched state observer is first constructed, then switched linear output-feedback controllers for individual subsystems are designed. By skillfully constructing multiple Lyapunov–Krasovskii functionals and successfully solving several troublesome obstacles, such as time-varying delay and switching signals and nonlinearity in the design procedure, the switched linear output-feedback controllers designed can render the resulting closed-loop switched system semi-globally stabilizable under a class of switching signals with average dwell time. Furthermore, under some milder conditions on nonlinearities, the semi-global output-feedback stabilization problem for switched nonlinear time-delay systems is also studied. Simulation studies on two examples, which include a continuous stirred tank reactor, are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

13.
This paper is concerned with the problem of simultaneous fault detection and control of switched systems under the asynchronous switching. A switching law and fault detection/control units called fault detector/controllers are designed to guarantee the fault sensitivity and robustness of the closed-loop systems. Different from the existing results, a state reset strategy is introduced in the process of fault detection/control, which reduces the conservatism caused by the jump of multiple Lyapunov functions at switching instants. Further, the proposed strategy is only dependent the state of fault detector/controllers, which is available when the system state is invalid. Finally, by using a performance gain transform technique, non-convex fault sensitivity conditions are converted into the convex error attenuation ones. This further improves the fault detection effect. A numerical example is given to demonstrate the effectiveness of the proposed results.  相似文献   

14.
This paper is concerned with the exponential stabilization of switched linear systems subject to actuator saturation with both stabilizable subsystems and unstabilizable subsystems for continuous-time case and discrete-time case, respectively. Sufficient conditions for the exponential stabilization under dwell time switching under the cases of continuous-time and discrete-time are established by using a novel class of multiple time-varying Lyapunov function. The existence conditions for stabilizing controllers are presented in terms of linear matrix inequalities (LMIs) for the continuous-time case and the discrete-time case, respectively. Two optimization problems are proposed for obtaining the maximal attraction region. The problem of exponential stabilization for switched system subject to actuator saturation with asynchronous switching controller is also studied. Several numerical examples are presented to prove the validity of the obtained results.  相似文献   

15.
This paper is concerned with the exponential stability and L1-gain analysis problem for switched positive T–S fuzzy systems under both time-varying delays and asynchronous switching. By permitting the increase of the designed multiple Lyapunov functionals during the running time of the activated subsystem, solvable conditions for the stability and L1-gain are developed by adopting the mode-dependent average dwell time (MDADT) technique. The desired controllers guaranteeing the stability and the L1-gain performance are designed based on the obtained solvable conditions. An example is given to demonstrate the effectiveness of the proposed methods.  相似文献   

16.
This paper is concerned with finite-time HH control problem for a class of switched linear systems by using a mode-dependent average dwell time (MDADT) method. The switching signal used in this paper is more general than the average dwell time (ADT), in which each mode has its own ADT. By combining the MDADT and Multiple Lyapunov Functions (MLFs) technologies, some sufficient conditions, which can guarantee that the corresponding closed-loop system is finite-time bounded with a prescribed HH performance, are derived for the switched systems. Moreover, a set of mode-dependent dynamic state feedback controllers are designed. Finally, two examples are given to verify the validity of the proposed approaches.  相似文献   

17.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

18.
In this paper, the multiple model strategy is applied to the adaptive control of switched linear systems to improve the transient performance. The solvability of the adaptive stabilization problem of each subsystem is not required. Firstly, the two-layer switching mechanism is designed. The state-dependent switching law with dwell time constraint is designed in the outer-layer switching to guarantee the stability of the switched systems. During the interval of dwell time constraint, the parameter resetting adaptive laws are designed in the inner-layer switching to improve the transient performance. Secondly, the minimum dwell time constraint providing enough time for multiple model adaptive control strategy to work fully and maintaining the stability of the switched systems is found. Finally, the proposed switched multiple model adaptive control strategy guarantees that all the closed-loop system signals remain bounded and the state tracking error converges to zero.  相似文献   

19.
20.
This paper investigates the problem of robust H filtering for switched stochastic systems under asynchronous switching. The so-called asynchronous switching means that the switching between the filters and system modes is asynchronous. The aim is to design a filter ensuring robust exponential mean square stability and a prescribed H performance level for the filtering error systems. Based on the average dwell time approach and piecewise Lyapunov functional technique, sufficient conditions for the existence of the robust H filter are derived, and the proposed filter can be obtained by solving a set of LMIs(linear matrix inequalities). Finally, a numerical example is given to show the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号