首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-carnitine is popular as a potential ergogenic aid because of its role in the conversion of fat into energy. The present study was undertaken to investigate the effect of short term supplementation of L-carnitine on metabolic markers and physical efficiency tests under short term calorie restriction. Male albino rats were divided into four groups (n = 12 in each)—control, calorie restricted (CR for 5 days, 25 % of basal food intake), L-carnitine supplemented (CAR, given orally for 5 days at a dose of 100 mg/kg), CR with L-carnitine supplementation (CR + CAR). Food intake and body weight of the rats were measured along with biochemical variables like blood glucose, tissue glycogen, plasma and muscle protein and enzymatic activities of CPT-1 (carnitine palmitoyl transferase-1) and AMP kinase. Results demonstrated that L-carnitine caused marked increase in muscle glycogen, plasma protein, CPT-1 activity and swim time of rats (P < 0.05) on short term supplementation. In addition to the substantive effects caused by CR alone, L-carnitine under CR significantly affected muscle glycogen, plasma protein, CPT-1 activity and AMP kinase (P < 0.05). Short term CR along with L-carnitine also resulted in increased swim time of rats than control, CR and L-carnitine treated rats (P < 0.05). The present study was an attempt towards developing an approach for better adherence to dietary restriction regimen, with the use of L-carnitine.  相似文献   

2.
3.
A droplet-based micro-total-analysis system involving biosensor performance enhancement by integrated surface-acoustic-wave (SAW) microstreaming is shown. The bioreactor consists of an encapsulated droplet with a biosensor on its periphery, with in situ streaming induced by SAW. This paper highlights the characterization by particle image tracking of the speed distribution inside the droplet. The analyte-biosensor interaction is then evaluated by finite element simulation with different streaming conditions. Calculation of the biosensing enhancement shows an optimum in the biosensor response. These results confirm that the evaluation of the Damköhler and Peclet numbers is of primary importance when designing biosensors enhanced by streaming.It has been pointed out that biosensing performances can be limited by the diffusion of the analytes near the sensing surface.1 In the case of low Peclet number hydrodynamic flows, typical of microfluidic systems, molecule displacements are mainly governed by diffusive effects that affect time scales and sensitivity. To overcome this problem, the enhancement of biosensor performance by electrothermal stirring within microchannels was first reported by Meinhart et al.2 Other authors3, 4 numerically studied the analyte transport as a function of the position of a nanowire-based sensor inside a microchannel, stressing on the fact that the challenge for nanobiosensors is not the sensor itself but the fluidic system that delivers the sample. Addressing this problem, Squires et al.5 developed a simple model applicable to biosensors embedded in microchannels. However, the presented model is limited to the case of a steady flow. The use of surface-acoustic waves (SAWs) for stirring in biomicrofluidic and chemical systems is becoming a popular investigation field,6, 7, 8, 9 especially to overcome problems linked to steady flows by enhancing the liquid∕surface interaction.1, 10, 11 The main challenges that need to be addressed when using SAW-induced stirring are the complexity of the flow and its poor reproducibility. However, some technical solutions were proposed to yield a simplified microstreaming. Yeo et al. presented a centrifugation system based on SAW that produces the rotation of the liquid in a droplet in a reproducible way by playing on the configuration of the transducers and reflectors,12 and presented a comprehensive experimental study of the three-dimensional (3D) flow that causes particle concentration in SAW-stirred droplets,13 revealing the presence of an azimuthal secondary flow in addition to the main vortexlike circular flow present in acoustically stirred droplets. The efficiency of SAW stirring in microdroplets to favorably cope with mass transport issues was finally shown by Galopin et al.,14 but the effect of the stirring on the analyte∕biosensor interaction was not studied. It is expected to overcome mass transport limitations by bringing fresh analytes from the bulk solution to the sensing surface.The studied system, described in Fig. Fig.1,1, consists of a microliter droplet microchamber squeezed between a hydrophobic piezoelectric substrate and a hydrophobic glass cover. Rayleigh SAWs are generated using interdigitated transducers (interdigital spacing of 50 μm) laid on an X-cut LiNbO3 substrate.1, 15, 16 The hydrophobicity of the substrate and the cover are obtained by grafting octadecyltrichlorosilane (OTS) self-assembled monolayers (contact angle of 108° and hysteresis of 9°). To do so, the surface is first hydroxylized using oxygen plasma (150 W, 100 mT, and 30 sccm3 O2) during 1 min and then immersed for 3 h into a 1 mM OTS solution with n-hexane as a solvent.Open in a separate windowFigure 1(a) General view of the considered system. (b) Mean value of the measured speeds within the droplet as a function of the inlet power before amplification.When Rayleigh waves are radiated toward one-half of the microchamber, a vortex is created in the liquid around an axis orthogonal to the substrate due to the momentum transfer between the solid and the liquid. This wave is generated under the Rayleigh angle into the liquid.Speed cartographies of the flow induced in the droplet are realized using the particle image tracking technique for different SAW generation powers. To do so, instantaneous images of the flow are taken with a high-speed video camera at 200 frames∕s and an aperture time of 500 μs on a 0.25 μl droplet containing 1 μm diameter fluorescent particles. Figure Figure11 shows the mean speed measured in the droplet as a function of the inlet power. The great dependence of the induced mean speed with the SAW power enables a large range of flow speeds in the stirred droplet. Moreover, the flow was visualized with a low depth of field objective. It was found to be circular and two dimensional (2D) in a large thickness range of the droplet.The binding of analytes to immobilized ligands on a biosensor is a two step process, including the mass transport of the analyte to the surface, followed by a complexation step,AbulkkmAsurface+Bka,kdAB(1)with km as the constant rate for mass transport from and to the sensor, and ka and kd as the constant rates of association and dissociation of the complex.At the biosensor surface, the reaction kinetics consumes analytes but their transport is limited by diffusive effects. In this case, the Damköhler number brings valuable information by comparing these two effects. Calling the characteristic time of reaction and diffusion, respectively, τC and τM, the mixing time in diffusion regime can be approximated by τMh2D with D as the diffusion coefficient and h a characteristic length of the microchannel. Calling RT the ligand concentration on the surface in mole∕m2, the Damköhler number (Da) can be written asDa=τMτC=kaRThD.(2)Depending on the type of reaction, the calculation of Da helps determine if a specific biointeraction will benefit from a mass SAW-based microstreaming. If the Damköhler number is low, the reaction is slow compared to mass transport and the reaction will not significantly benefit from microstirring. For example, the hybridization of 19 base single stranded DNA in a microfluidic system with a characteristic length of 500 μm is characterized by a Damköhler number of 0.07 and is therefore not significantly influenced by mass transport. On the contrary, the binding of biotin to immobilized streptavidin is characterized by a Da number of approximately 104. In this case, the stirring solution will significantly improve the reaction rate.COMSOL numerical simulations were carried out to study the efficiency of the SAW stirring in the case of a droplet-based microbioreactor with a diameter of 1 mm. Assuming a 2D flow, the simulated model takes into account the convective and diffusive effects in the analyte-carrying fluid and the binding kinetics on the biosensor surface. This approach was thoroughly developed by Meinhart et al.2On the biosensor surface, the following equations are solved:Bt=kacs(RTB)kdB,(3)Bt=D|cy|y=0(4)with c as the local concentration of analytes in the droplet and B as the surface concentration of bound analytes on the biosensor surface. Simulation results show that a depleted zone is formed near the biosensor in the case of an interaction without stirring. This zone is characterized by a low concentration of analytes and results from the trapping of analytes on the biosensor surface, thus creating a concentration gradient on the vicinity of the biosensor. When stirring is applied, the geometry of the depleted zone is modified, as it is pushed in the direction of the flow. The geometry of the depleted zone then depends on many parameters, among which the diffusion coefficient D, the speed distribution of the flow (not only near the biosensor but also in the whole microfluidic system), and the reaction kinetics on the biosensor. In our case, which is assimilated to a simple circular flow, the depleted zone reaches a permanent state consisting of an analyte-poor layer situated in the exterior perimeter of the stirred droplet. The diffusion of analytes is then limited again by diffusion from the inner part of the droplet toward its exterior perimeter (see Fig. Fig.22).Open in a separate windowFigure 2(a) Mean concentration of bound analytes vs time for different mean flow speeds. (b) The obtained concentration profiles with and without circular stirring, t=10 000 s.The initial analyte and receptor concentrations are, respectively, 0.1 nM in the solution and 3.3×10−3 nM m on the biosensor surface, the diffusion coefficient is D=10−11 m2 s−1, and the reaction constants are ka=106 M−1 s−1 and kd=10−3 s−1. Simulations show that the mean concentration of bound analytes highly increases with the flow speed, improving the efficiency of the biosensing device. To evaluate the benefits of in situ microstreaming with SAW, the same simulations were conducted for Da numbers ranging from 104 to 108 M−1∕s, by ranging the diffusion coefficient from 4×10−12 to 4×10−9 m2∕s, and the association coefficient ka from 104 to 108 M−1∕s. The enhancement factor of analyte capture, defined as the ratio of the binding rate with streaming B and the binding rate without streaming B0, is plotted in Fig. Fig.33 for different values of Da. Calculations are done in the case of a mean flow speed of 0.5 mm∕s.Open in a separate windowFigure 3(a) Enhancement factor (defined as the ratio between binding rate with streaming B and binding rate without streaming B0) for different Damkhöler numbers and (b) normalized enhancement factor for different Peclet numbers.One can notice the saturation of the enhancement factor curve for large value of Da to the value of 3.5 for high Da. This can be explained by the fact that for large kaDa ratios, the analytes, which normally require penetration in the depleted zone by diffusion, do not have time to interact with the biosensor when they pass in the vicinity of its surface. The efficiency of the streaming is then reduced for large values of Da. In the case of our specific flow configuration, the enhancement factor reaches 3.2 for the interaction of streptavidin on immobilized biotin (Da=103).The reported simulation results can be compared to an experimental value obtained using the droplet-based surface plasmon resonance sensor streamed in situ using SAW reported by Yeo et al.12 By monitoring the streptavidin∕biotin binding interaction on an activated gold slide, they showed that SAW stirring brings an improvement factor of more than 2. This difference can be accounted to the high complexity of the induced 3D flow, which was modeled in a simple manner in our calculations.Other factors must be taken into account when optimizing the improvement factor, such as the flow velocity and the characteristic length of the mixing. To do so, the Peclet number allows the comparison of the convective and diffusive effects.17 For δC a typical variation in concentration on the distance h, the Peclet number is given byPe=UhD.(5)A significantly high Peclet number causes a decrease in biosensing efficiency as the analytes do not have enough time to interact with the biosensing surface by diffusion through the analyte-poor layer. On the contrary, the case of a low Peclet number corresponds to the diffusion-limited problem. Therefore, for each Damköhler number, there is a Peclet number optimizing this factor. To illustrate this fact, Fig. Fig.3b3b shows the calculation of the enhancement factor as a function of the Peclet number for a given Da.In this paper, we showed that surface loading of typical analytes on a droplet-based biosensor can be highly increased by SAW microstirring. The system permits the enhancement of the biosensing performances by the continuous renewal of the analyte-carrying fluid near the sensing surface. Thanks to mean flow speeds measured up to 1800 μm∕s, the SAW microstreaming can be beneficial to the biosensing of a large range of analyte∕ligand interactions. In addition to the biosensing performance improvement, such a method can be easily integrated in micro-micro-total-analysis systems, which makes it a convenient tool for liquid handling in future biochips.  相似文献   

4.
Fuchs (2010 Fuchs, C. 2010. Labor in information capitalism and on the Internet. The Information Society 26:179196.[Taylor & Francis Online], [Web of Science ®] [Google Scholar], 2012 Fuchs, C. 2012. With or without Marx? With or without capitalism?: A re-joinder to Adam Arvidsson and Eleanor Colleoni. tripleC 10 (2):63345. [Google Scholar]) argues that users of social media produce value and surplus value in the Marxian sense. Arvidsson and Colleoni (2012 Arvidsson, A., and E. Colleoni. 2012. Value in information capitalism and on the Internet. The Information Society 28:13550.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) critique this hypothesis, claiming that Marx's theory of value is irrelevant to the regime of value production on social media platforms in particular and in informational capitalism in general. They claim that the affective relations and financial speculations that generate value on social media are not dependent on labor time. This article critically engages Fuchs, and Arvidsson and Colleoni, by revisiting Marx's theory of value. Contra Fuchs, we argue that audiences do not produce value and surplus value—neither for social nor for mass media. Contra Arvidsson and Colleoni, we argue that so-called affective relations (philia) do not produce value either. Instead we demonstrate that social media generate revenue from four primary sources—by leasing advertisement space to generate advertisement rent, by selling information, by selling services to advertisers, and by generating profits from fictitious capital and speculative windfalls. All four, we argue, can be adequately explained by Marx's theory of value.  相似文献   

5.

This article develops and tests a model examining the relationship between firm globalization, scope of e-commerce use, and firm performance, using data from a large-scale cross-country survey of firms from three industries. We find that globalization leads to both greater scope of e-commerce use and improved performance, measured as efficiency, coordination, and market impacts. Scope of e-commerce use also leads to greater firm performance of all three types. Globalization has differential effects on B2B and B2C e-commerce, however, such that highly global firms are more likely to do B2B but less likely to do B2C. Our findings provide support for Porter's (1986) Porter, M. E., ed. 1986. Competition in global industries, Boston: Harvard Business School Press.  [Google Scholar] thesis that upstream business activities (namely, B2B) are more global while downstream business activities (B2C) are more local or multidomestic.  相似文献   

6.

Using Layder's domain theory (1997) Layder, D. 1997. Modern social theory:Key debates and new directions, London: UCL Press.  [Google Scholar] as an analytical framework, this article shows how the information society can be measured through various levels of society. Layder's notions of psychobiography, situated activity, social setting, and contextual resources help identify cultural and social indicators for understanding changes in the information society. With the help of empirical indicators for each domain, this article uses the case of Estonia to show that there is often more to the information society than what is captured by traditional measures. This article calls for a context-sensitive approach, which takes into consideration social and cultural indicators. Measurements from all four domains are necessary for understanding the complexity of information-society-related issues.  相似文献   

7.
In this paper, we consider multipoint boundary value problem for third-order differential equations with p-Laplacian at resonance
  相似文献   

8.
Nowadays, microfluidics is attracting more and more attentions in the biological society and has provided powerful solutions for various applications. This paper reported a microfluidic strategy for aqueous sample sterilization. A well-designed small microchannel with a high hydrodynamic resistance was used to function as an in-chip pressure regulator. The pressure in the upstream microchannel was thereby elevated which made it possible to maintain a boiling-free high temperature environment for aqueous sample sterilization. A 120 °C temperature along with a pressure of 400 kPa was successfully achieved inside the chip to sterilize aqueous samples with E. coli and Staphylococcus aureus inside. This technique will find wide applications in portable cell culturing, microsurgery in wild fields, and other related micro total analysis systems.Microfluidics, which confines fluid flow at microscale, attracts more and more attentions in the biological society.1–4 By scaling the flow domain down to microliter level, microfluidics shows attractive merits of low sample consumption, precise biological objective manipulation, and fast momentum/energy transportation. For example, various cell operations, such as culturing5–7 and sorting,8–10 have already been demonstrated with microfluidic approaches. In most biological applications, sterilization is a key sample pre-treatment step to avoid contamination. However, as far as the author knew, this important pre-treatment operation is generally achieved in an off-chip way, by using high temperature and high pressure autoclave. Actually, microfluidics has already been utilized to develop new solution for high pressure/temperature reactions. The required high pressure/temperature condition was generated either by combining off-chip back pressure regulator and hot-oil bath,11,12 or by integrating pressure regulator, heater, and temperature sensor into a single chip.13 This work presented a microfluidic sterilization strategy by implementing the previously developed continuous flowing high pressure/temperature microfluidic reactor.Figure Figure11 shows the working principle of the present microfluidic sterilization chip. The chip consists of three zones: sample loading (a microchannel with length of 270 mm and width of 40 μm), sterilization (length of 216 mm and width of 100 μm), and pressure regulating (length of 42 mm and width of 5 μm). Three functional zones were separated by two thermal isolation trenches. The sample was injected into the chip by a syringe pump and experienced two-step filtrations (feature sizes of 20 μm and 5 μm, not shown in Figure Figure1)1) at the entrance to avoid the channel clog. All channels had the same depth of 40 μm. According to the Hagen–Poiseuille relationship,15 the pressure regulating channel had a large flow resistance (around 1.09 × 1017 Pa·s/m3, see supplementary S1 for details16) because of its small width, thereby generated a high working pressure in the upstream sterilization channel under a given flow rate. The boiling point of the solution will then be raised up by the elevated pressure in the sterilization zone followed by the Antoine equation.16 By integrating heater/temperature sensors in the pressurized zone, a high temperature environment with temperature higher than 100 °C can thereby be realized for aqueous sample sterilization. The sample was collected from the outlet and cultured at 37 °C for 12 h. Bacterial colony was counted to evaluate the sterilization performance.Open in a separate windowFIG. 1.Working principle of the present microfluidic sterilization. Only microfluidic channel, heater, and temperature sensor were schematically shown. The varied colour of the microchannel represents the pressure and that of the halation stands for the temperature.Fabrication of this chip has been introduced elsewhere.14 The fabricated chip and the experimental system are shown in Figure Figure2.2. There were two inlets of the chip. While, in the experiment, only one inlet used and connected to the syringe pump. The backup one was blocked manually. The sample load zone was arranged in between of the sterilization zone and the pressure regulating zone based on thermal management consideration. A temperature control system (heater/temperature sensor, power source, and multi-meter) was setup to provide the required high temperature. The heater and the temperature sensor were microfabricated Pt resistors. The temperature coefficient of resistance (TCR) was measured as 0.00152 K−1.Open in a separate windowFIG. 2.The fabricated chip and the experimental system. (a) Two chips with a penny for comparison. The left chip was viewed from the heater/temperature sensor side, while the right one was observed from the microchannel side (through a glass substrate). (b) The experimental system.Thermal isolation performance of the present chip before packaging with inlet/outlet was shown in Figure Figure3,3, to show the thermal interference issue. The results indicated that when the sterilization zone was heated up to 140 °C, the pressure regulating zone was about 40 °C. At this temperature, the viscosity of water decreases to 0.653 mPa·s from 1.00 mPa·s (at 20 °C), which will make the pressure in the sterilization zone reduced from 539 kPa (calculated at 20 °C and flow rate of 4 nl/s) to 387 kPa. The boiling point will then decrease to 142.8 °C, which will guarantee a boiling-free sterilization. In the cases without the thermal isolation trenches, the temperature of the pressure regulating zone reached as high as 75 °C because of the thermal interference from the sterilization zone, as shown in Figure Figure3.3. The pressure in the sterilization zone was then reduced to 268 kPa (calculated at flow rate of 4 nl/s) and the boiling temperature was around 130 °C, which was lower than the set sterilization temperature. Detail calculation can be found in supplementary S2.16Open in a separate windowFIG. 3.The temperature distribution of the chips (before packaged) with and without thermal isolation trenches (powered at 1 W). The data were extracted from the central lines of infrared images, as shown as inserts.Bacterial sterilization performance of the present chip was tested and the experimental results were shown in Figure Figure4.4. E. coli with initial concentration of 106/ml was pumped into and flew through the chip with the sterilization temperatures varied from 25 °C to 120 °C at flow rates of 2 nl/s and 4 nl/s. The outflow was collected and inoculated onto the SS agar plate evenly with inoculation loops. The population of bacteria in the outflow was counted based on the bacterial colonies after incubation at 37 °C for 12 h. Typical bacterial colonies were shown in Figure Figure4.4. The low flow rate case showed a better sterilization performance because of the longer staying period in the sterilization channel. The population of E. coli was around 1.25 × 104/ml after a 432 s-long, 70 °C sterilization (at flow rate of 2 nl/s). While at the flow rate of 4 nl/s, the cultivation result indicated the population was around 3.8 × 104/ml because the sterilization time was shorten to 216 s. A control case, where the solution flew through an un-heated chip at 2 nl/s, was conducted to investigate the effect of the shear stress on the sterilization performance (see the supplementary S3 for details16). As listed in Table TableI,I, the results indicated that the shear stress did not show any noticeable effect on the bacterial sterilization. When the chip was not heated, i.e., the case with the largest shear stress because of the highest viscosity of fluid, the bacterial cultivation was nearly the same as the off-chip results (no stress). The temperature has the most significant effect on the sterilization performance. No noticeable bacteria proliferation was observed in the cases with the sterilization temperature higher than 100 °C, as shown in Figure Figure44.

Table I.

The E. coli cultivation results under different flow rates and sterilization temperatures. a
 25 °C70 °C100 °C120 °C25 °C b
2 nl/s1.89/+++1.38/+1.16/−1.04/−0/+++
4 nl/s3.78/+++2.76/+2.32/−2.08/−0/+++
Open in a separate windowaData in the table are shear stress (Pa)/population of bacteria, where “+++” indicates a large proliferation, “+” means small but noticeable proliferation, “−” represents no proliferation.bOff-chip control group.Open in a separate windowFIG. 4.Sterilization performance of the present chip with E. coli and S. aureus as test bacteria. All the original population was 106/ml. Inserted images showed the images of the culture disk after bacteria incubation.Sterilization of another commonly encountered bacterium, Staphylococcus aureus, with initial population of 106/ml was also tested in the present chip, as shown in Figure Figure4.4. Similarly, no noticeable S. aureus proliferation was found when the sterilization temperature was higher than 100 °C.In short, we demonstrated a microfluidic sterilization strategy by utilizing a continuous flowing high temperature/pressure chip. The population of E. coli or S. aureus was reduced from 106/ml to an undetectable level when the sterilization temperature of the chip was higher than 100 °C. The chip holds promising potential in developing portable microsystem for biological/clinical applications.  相似文献   

9.
10.
Let denote the class of functions analytic in U={z:|z|<1} which satisfy for fixed M, z=reiθU and
  相似文献   

11.
12.
Polymer-based microneedles have drawn much attention in transdermal drug delivery resulting from their flexibility and biocompatibility. Traditional fabrication approaches are usually time-consuming and expensive. In this study, we developed a new double drawing lithography technology to make biocompatible SU-8 microneedles for transdermal drug delivery applications. These microneedles are strong enough to stand force from both vertical direction and planar direction during penetration. They can be used to penetrate into the skin easily and deliver drugs to the tissues under it. By controlling the delivery speed lower than 2 μl/min per single microneedle, the delivery rate can be as high as 71%.Microelectromechanical systems (MEMS) technology has enabled wide range of biomedical devices applications, such as micropatterning of substrates and cells,1 microfluidics,2 molecular biology on chips,3 cells on chips,4 tissue microengineering,5 and implantable microdevices.6 Transdermal drug delivery using MEMS based devices can delivery insoluble, unstable, or unavailable therapeutic compounds to reduce the amount of those compounds used and to localize the delivery of potent compounds.7 Microneedles for transdermal drug delivery are increasingly becoming popular due to their minimally invasive procedure,8 promising chance for self-administration,9 and low injury risks.10 Moreover, since pharmaceutical and therapeutic agents can be easily transported into the body through the skin by microneedles,11, 12 the microneedles are promising to replace traditional hypodermic needles in the future. Previously, various microneedles devices for transdermal drug delivery applications have been reported. They have been successfully fabricated by different materials, including silicon,13 stainless steel,14 titanium,15 tantalum,16 and nickel.17 Although microneedles with these kinds of materials can be easily fabricated into sharp shape and offer the required mechanical strength for penetration purpose, such microneedles are prone to be damaged18 and may not be biocompatible.19 As a result, polymer based microneedles, such as SU-8,20, 21 polymethyl meth-acrylate (PMMA),22, 23 polycarbonates (PCs),24, 25 maltose,26, 27 and polylactic acid (PLA),28, 29 have caught more and more attentions in the past few years. However, in order to obtain ultra-sharp tips for penetrating the barrier layer of stratum corneum,30 conventional fabrication technologies, for instances, PDMS (Polydimethylsiloxane) molding technology,31, 32 stainless steel molding technology,33 reactive ion etching technology,34 inclined UV (Ultraviolet) exposure technology,35 and backside exposure with integrated lens technology36 are time-consuming and expensive. In this paper, we report an innovative double drawing lithography technology for scalable, reproducible, and inexpensive microneedle devices. Drawing lithography technology37 was first developed by Lee et al. They leveraged the polymers'' different viscosities under different temperatures to pattern 3D structures. However, it required that the drawing frames need to be regular cylinders, which is not proper for our devices. To solve the problem, the new double drawing lithography is developed to create sharp SU-8 tips on the top of four SU-8 pillars for penetration purpose. Drugs can flow through the sidewall gaps between the pillars and enter into the tissues under the skin surface. The experiment results indicate that the new device can have larger than 1N planar buckling force and be easily penetrated into skin for drugs delivery purpose. By delivering glucose solution inside the hydrogel, the delivering rate of the microneedles can be as high as 71% when the single microneedle delivery speed is lower than 2 μl/min.An array of 3 × 3 SU-8 supporting structures was patterned on a 140 μm thick, 6 mm × 6 mm SU-8 membrane (Fig. (Fig.1a).1a). Each SU-8 supporting structure included four SU-8 pillars and was 350 μm high. The four pillars were patterned into a tubelike shape on the membrane (Fig. (Fig.1b).1b). The inner diameter of the tube was 150 μm, while the outer diameter was 300 μm. SU-8 needles of 700 μm height were created on the top of SU-8 supporting structures to ensure the ability of transdermal penetration. Two PDMS layers were bonded with SU-8 membrane to form a sealed chamber for storing drugs from the connection tube. Once the microneedles entered into the tissue, drugs could be delivered into the body through the sidewall gaps between the pillars (Fig. (Fig.1c1c).Open in a separate windowFigure 1Schematic illustration of the SU-8 microneedles. (a) Overview of the whole device; (b) SU-8 supporting structures made of 4 SU-8 pillars; and (c) enlarged view of a single SU-8 microneedle.The fabrication process of SU-8 microneedles is shown in Fig. Fig.2.2. SU-8 microneedles fabrication started from a layer of Polyethylene Terephthalate (PET, 3M, USA) film pasted on the Si substrate by sticking the edge area with kapton tape (Fig. (Fig.2a).2a). The PET film, a kind of transparent film with poor adhesion to SU-8, was used as a sacrificial layer to dry release the final device from Si substrate. A 140 μm thick SU-8 layer was deposited on the top of this PET film. To ensure a uniform surface of this thick SU-8 layer, the SU-8 deposition was conducted in two steps coating. After exposed under 450 mJ/cm2 UV, the membrane pattern could be defined (Fig. (Fig.2b).2b). In order to ensure an even surface for following spinning process, another 350 μm SU-8 layer was directly deposited on this layer in two steps without development. With careful alignment, an exposure of 650 mJ/cm2 UV energy was performed on this 350 μm SU-8 layer to define the SU-8 supporting structures (Fig. (Fig.2c).2c). The SU-8 structure could be easily released from the PET substrate by removing the kapton tape and slightly bending the PET film. Two PDMS layers were bonded with this SU-8 structure by a method reported by Zhang et al.38 (Fig. (Fig.2d2d).Open in a separate windowFigure 2Fabrication process for SU-8 microtubes. (a) Attaching a PET film on the Si substrate; (b) exposing the first layer of SU-8 membrane without development; (c) depositing and patterning two continuous SU-8 layers as sidewall pillars; (d) releasing the SU-8 structure from the substrate and bonding it with PDMS; (e) drawing hollowed microneedles on the top of supporting structures; (f) baking and melting the hollowed microneedles to allow the SU-8 flow in the gaps between pillars; and (g) drawing second time on the top of the melted SU-8 flat surface to get microneedles.In our previous work,39 we used one time stepwise controlled drawing lithography technology for the sharp tips integration. However, since the frame used to conduct drawing process in present study is a four-pillars structure rather than a microtube, the conventional drawing process can only make a hollowed tip but not a solid tip structure (Fig. (Fig.3).3). This kind of tip was fragile and could not penetrate skin in the practical testing process. To solve the problem, we developed an innovative double drawing lithography process. After bonding released SU-8 structure with PDMS layers (Fig. (Fig.2d),2d), we used it to conduct first time stepwise controlled drawing lithography37 and got hollowed tips (Fig. (Fig.2e).2e). Briefly, the SU-8 was spun on the Si substrate and kept at 95 °C until the water inside completely vaporized. Device of SU-8 supporting structures was fixed on a precision stage. Then, the SU-8 supporting structures were immersed into the SU-8 by adjusting the precision state. The SU-8 were coated on the pillars'' surface. Then, the SU-8 supporting structures were drawn away from the interface of the liquid maltose and air. After that, the temperature and drawing speed were increased. Since the SU-8 was less viscous at higher temperature, the connection between the SU-8 supporting structures and surface of the liquid SU-8 became individual SU-8 bridge, shrank, and then broke. The end of the shrunk SU-8 bridge forms a sharp tip on the top of each SU-8 supporting structure when the connection was separated. After the hollowed tips were formed in the first step drawing process, the whole device was baked on the hotplate to melt the hollowed SU-8 tips. Melted SU-8 reflowed into the gaps between four pillars and the tips became domes (Fig. (Fig.2f).2f). Then, a second drawing process was conducted on the top of melted SU-8 to form sharp and solid tips (Fig. (Fig.2g).2g). The final fabricated device is shown in Fig. Fig.44.Open in a separate windowFigure 3A hollowed SU-8 microneedle fabricated by single drawing lithography technology (scale bar is 100 μm).Open in a separate windowFigure 4Optical images for the finished SU-8 microneedles.During the double drawing process, as long as the heated time and temperature were controlled, the SU-8 flow-in speed of SU-8 inside the gaps could be precisely determined. The relationship between baking temperature and flow-in speed was studied. As shown in Fig. Fig.5,5, the flow-in speed is positive related to the baking temperature. The explanation for this phenomena is that the SU-8''s viscosity is different under different baking temperatures.40 Generally, baked SU-8 has 3 status when temperature increases, solid, glass, and liquid. The corresponding viscosity will decrease and the SU-8 can also have higher fluidity. When the baking temperature is larger than 120 °C, the flow-in speed will increase sharply. But, if the baking temperature is higher, the SU-8 will reflow in the gaps too fast, which makes the flow-in depth hard to be controlled. There is a high chance that the whole gaps will be blocked, and no drugs can flow through these gaps any more. Considering that the total SU-8 supporting structure is only 350 μm high, we choose 125 °C as baking temperature for proper SU-8 flow-in speed and easier SU-8 flow-in depth control.Open in a separate windowFigure 5The relationship between flow-in speed and baking temperature.To ensure the adequate stiffness of the SU-8 microneedles in vertical direction, Instron Microtester 5848 (Instron, USA) was deployed to press the microneedles with the similar method reported by Khoo et al.41 As shown in Fig. Fig.6a,6a, the vertical buckling force was as much as 8.1N, which was much larger than the reported minimal required penetration force.42 However, in the previous practical testing experiments, even though the microneedles were strong enough in vertical direction, the planar shear force induced by skin deformation might also break the interface between SU-8 pillars and top tips. In our new device with four pillars supporting structure, the SU-8 could flow inside the sidewall gaps between the pillars to form anchors. These anchors could enhance microneedles'' mechanical strength and overcome the planar shear force problems. Moreover, the anchors strength could be improved by controlling the SU-8 flow-in depth. Fig. Fig.77 shows that the flow-in depth increases when the baking time increases as the baking time increases at 125 °C. Fig. Fig.6b6b shows that the corresponding planar buckling force can be improved to be larger than 1 N by increasing flow-in depth. Some sidewall gaps at bottom are kept on purpose for drugs delivery; hence, the flow-in depth is chosen as 200 μm.Open in a separate windowFigure 6(a) Measurement of the vertical buckling force. (b) The planar buckling force varies under different flow-in depth (I, II, III, and IV corresponding to the certain images in Fig. Fig.77).Open in a separate windowFigure 7Different flow-in depth inside the gaps between SU-8 pillars. (a) 0 μm; (b) 100 μm; (c) 200 μm; and (d) 350 μm (scale bar is 100 μm).The penetration capability of the 3 × 3 SU-8 microneedles array is characterized by conducting the insertion experiment on the porcine cadaver skin. 10 microneedles devices were tested and all of them were strong enough to be inserted into the tissue without any breakage. Histology images of the skin at the site of one microneedle penetration were derived to prove that the sharp conical tip was not broken during the insertion process (Fig. (Fig.8).8). It also shows penetrated evidence because the hole shape is the same as the sharp conical tip.Open in a separate windowFigure 8Histology image of individual microneedle penetration (scale bar is 100 μm).In order to verify that the drug solution can be delivered into tissue from the sidewall gaps of the microneedles, FITC (Fluorescein isothiocyanate) (Sigma Aldrich, Singapore) solution was delivered through the SU-8 microneedles after they were penetrated into the mouse cadaver skin. The representative results were then investigated via a confocal microscope (Fig. (Fig.9).9). The permeation pattern of the solution along the microchannel created by microneedles confirmed the solution delivery results. The black area was a control area without any diffused florescent solution. In contrast, the illuminated area in Fig. Fig.99 indicates the area where the solution has diffused to it. These images were taken consecutively from the skin surface down to 180 μm with 30 μm intervals. The diffusion area had a similar dimension with the inserted microneedles. It has proved that the device can be used to deliver drugs into the body.Open in a separate windowFigure 9Images of confocal microscopy to show the florescent solution is successfully delivered into the tissue underneath the skin surface. (a) 30 μm; (b) 60 μm; (c) 90 μm; (d) 120 μm; (e) 150 μm; and (f) 180 μm (scale bar is 100 μm).Due to the uneven surface of deformed skin, there is always tiny gap happened between tips of some microneedles and local surface skin. The microneedles could not be entirely inserted into the tissue. Drugs might leak to the skin surface through the sidewall gaps under certain driven pressure. Hydrogel absorption experiment was conducted to quantify the delivery rate (i.e., the ratio of solution delivered into tissues in the total delivered volume) and to optimize the delivery speed. Using hydrogel as the tissue model for quantitative analysis of microneedle releasing process was reported by Tsioris et al.43 The details are shown here. Gelatin hydrogel was prepared by boiling 70 ml DI (Deionized) water and mixing it with 7 g of KnoxTM original unflavored gelatin powder. The solution was poured into petri dish to 1 cm high. Then, the petri dish was put into a fridge for half an hour. Gelatin solution became collagen slabs. The collagen slabs were cut into 6 mm × 6 mm sections. A piece of fully stretched parafilm (Parafilm M, USA) was tightly mounted on the surface of the collagen slabs. This parafilm was used here to block the leaked solution further diffusing into the collagen slab in the delivery process. Then, the microneedles penetrated the parafilm and went into the collagen slab. Controlled by a syringe pump, 0.1 ml–0.5 mg/ml glucose solution was delivered into the collagen slab under different speeds. Methylene Blue (Sigma Aldrich, Singapore) was mixed into the solution for better inspection purpose (Fig. 10a). Then, the collagen slabs was digested in 1 mg/ml collagenase (Sigma Aldrich, Singapore) at room temperature (Fig. 10b). It took around 1 h that all the collagen slabs could be fully digested (Fig. 10d). The solution was collected to measure the glucose concentration with glucose detection kit (Abcam, Singapore). Briefly, both diluted glucose standard solution and the collected glucose solution were added into a series of wells in a well plate. Glucose assay buffer, glucose enzyme, and glucose substrate were mixed with these samples in the wells. After incubation for 30 min, their absorbance were examined by using a microplate reader at a wavelength of 450 nm. By comparing the readings with the measured concentration standard curve (Fig. 11a), the glucose concentration in the hydrogel, the glucose absorption rate in the hydrogel, and the solution delivery rate by microneedles could be measured and calculated. As shown in Fig. 11b, when the delivering speed of a single microneedle increased from 0.1 μl/min to 2 μl/min, the glucose absorption rate also increased. Most of the glucose solution from microneedles could go into the hydrogel. The delivered rate could be as high as 71%. The rest solution leaked from sidewall gaps and blocked by parafilm. However, when the delivered speed for a single microneedle was larger than 2 μl/min, the hydrogel absorption rate was saturated. More and more solution could not go into the hydrogel but leak from the sidewall gaps. Then, the delivered rate decreased. Therefore, 2 μl/min was chosen as the optimized delivery speed for the microneedle.Open in a separate windowFigure 10Glucose solution could be delivered into the hydrogel, and the collagen stabs were dissolved by collagenase.Open in a separate windowFigure 11(a) Standard curve for glucose detection; (b) glucose absorption rate and solution delivery rate in a single needle corresponding to different delivery speed.In conclusion, a drug delivery device of integrated vertical SU-8 microneedles array is fabricated based on a new double drawing lithography technology in this study. Compared with the previous biocompatible polymer-based microneedles fabrication technology, the proposed fabrication process is scalable, reproducible, and inexpensive. The fabricated microneedles are rather strong along both vertical and planar directions. It is proved that the microneedles were penetrated into the pig skin easily. The feasibility of drug delivery using SU-8 microneedles is confirmed by FITC fluorescent delivery experiment. In the hydrogel absorption experiment, by controlling the delivery speed under 2 μl/min per microneedle, the delivery rate provided the microneedle is as high as 71%. In the next step, the microneedles will be further integrated with microfluidics on a flexible substrate, forming a skin-patch like drug delivery device, which may potentially demonstrate a self-administration function. When patients need an injection treatment at home, they can easily use such a device just like using an adhesive bandage strip.  相似文献   

13.
14.

Introduction:

Intensive exercising may significantly damage muscles which is reflected in pain, fatigue and the increase of muscle proteins concentrations in blood such are creatinin kinase (CK), lactic dehydrogenase (LD), myoglobin (MB) and other biochemical parameters including urea serum concentration (SU). Biochemical markers vary with age, sex, race, muscle mass, physical activity and climate conditions. They also assist us in determining the limit between the capacity for adaptation to given training process which results in supercomepensation and in condition of overtraining (OT), in the case of load that exceeds the physiologic potential of regeneration. Concerning the problem of diagnosis and explanation of the symptoms of overtraining, markers that can apply reliably and with sufficient sensitivity and simplicity of interpretation in the praxis are sought. It is critical to take into account difference among individuals and groups that could hamper the interpretation.

The most frequently used markers:

The most frequently used biomarkers that provide us with the information on physical activity and on the amount of load through exercise are CK, SU and LD. Level of serum retaining kinas has been measured and interpreted for years as part of different scientific and professional investigations and presents one of basic parameters for determining the level of muscle damage. It reaches maximal concentration of the fourth day of exercising which depends on the type of exercise and the nature of stress triggered by exercise but also on individual characteristics.The level of serum urea presents marker of nitric compounds metabolism and is the principle chemical substance in the urine of mammals. It is thus possible to draw a parallel between the increases of serum urea concentration on increased degradations of proteins. Significant fall of serum amino acid levels occurs after sixty to seventy minutes of exercising with the increase of urea and free tyrosine and these changes have high correlation with the duration and intensity of.LD changes are important index of well-trained sportsmen and their capability to withstand the pace and force during strain in the training process. The level of LD is a good index of exercise intensity and marker of metabolic exchange in tissues whose concentration in serum is dependent of cell damage.

Conclusion:

There is not a single, unique parameter that would provide enough valuable information for the estimation of the quality of exercising, amount of load and identification of overtraining. Delayed measurement of biomarkers is far from ideal, but it is obvious that the amount of stress/ load in training is the most important factor for the development of state of overtraining. Daily body weight control, diet, biochemical indices values and the input of water should be known and standardized before measurements. For the most of parameters determination of basal levels are needed in specific populations for more accurate interpretation and evaluation of results. The sampling process itself should be under the most strict conditions of standardization by repeating measurement at least every third day. Dependence of mentioned parameters (SU, CK, LD) on exercise intensity varies among individuals and without these additional measurements and subpopulation evaluations it is difficult to come to conclusions with certainty as well as to come to conclusions on causative correlations of training load and dynamic in biochemical parameters.Biochem Med (Zagreb) 2013 Jun; 23(2): A57–A58. Published online 2013 Jun 15. doi: 10.11613/BM.2013.027

Common sports injuries

Miljenko FranićAuthor information Copyright and License information DisclaimerDubrava University Hospital, ZagrebCorresponding author: rh.dbk@cinarfm©Copyright by Croatian Society of Medical Biochemistry and Laboratory MedicineThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Sports injuries are injuries that occur in athletic activities and can be broadly classified as either traumatic or overuse injuries. Traumatic injuries because of the dynamic and high collision are nature of some sports. Overuse injuries cause wear and tear on the body, particularly on joints subjected to repeated activity.At every age, competitive and recreational athletes sustain a wide variety of soft tissue, bone, ligament, tendon and nerve injuries, caused by direct trauma or repetitive stress. Different sports are associated with different patterns and types of injuries, whereas age, gender and type of activity influence the prevalence of injuries. Sports trauma commonly affects joints of the extremities or the spine.The hip, knee and ankle are at risk of developing osteoarthritis (OA) after injury or in the presence of malalignment, especially in association with high impact sport. Spine pathologies are associated more commonly with certain sports. Upper extremity syndromes caused by a single stress or by repetitive micro-trauma occur in a variety of sports.Random control trials expose some subjects, but not others, to an intervention. This is more clinical in nature and not typically appropriate for the study of injury patterns. Cohort studies monitor both injured and non-injured athletes, thereby providing results on the effects of participation. Case-control studies monitor only those athletes who suffered an injury. The Ideal study would be Cohort design conducted over several teams, with longitudinal prospective data collection and one recorder where possible, as well as uniformity of injury definition across sports so comparisons between studies can be made accurately.Physical injury is an inherent risk in sports participation and, to a certain extent, must be considered an inevitable cost of athletic training and competition. Injury may lead to incomplete recovery and residual symptoms, drop out from sports, and can cause joint degeneration in the long term.Advances in arthroscopic techniques allow operative management of most intraarticular post-traumatic pathologies in the lower and upper limb joints, but long-term outcomes are not available yet. It is important to balance the negative effects of sports injuries with the many benefits that a serious commitment to sport brings.Biochem Med (Zagreb) 2013 Jun; 23(2): A58–A59. Published online 2013 Jun 15. doi: 10.11613/BM.2013.027

Determination of sample size and number of study groups in sport studies

Mladen PetrovečkiAuthor information Copyright and License information DisclaimerDepartment of Laboratory Diagnosis, Dubrava University Hospital, Zagreb, Croatia, and Department of Medical Informatics, Rijeka University School of Medicine, RijekaCorresponding author: rh.irdem@pnedalmCopyright by Croatian Society of Medical Biochemistry and Laboratory MedicineThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.  相似文献   

15.
16.
17.
Wilson’s disease is a disease of abnormal copper metabolism in which free serum copper level is raised. The objective of the study was to determine, whether in Wilson disease, l-cysteine/l-cystine influx into RBC was decreased or not and the specific amino acid transporter affected by copper in normal human RBC. For l-cysteine/l-cystine influx, ten untreated cases, ten treated cases and ten age and sex matched healthy controls were recruited. To study the effect of copper on l-cysteine/l-cystine influx in RBC, 15 healthy subjects were selected. RBC GSH and l-cysteine/l-cystine influx were estimated by Beautler’s and Yildiz’s method respectively. In untreated cases, l-cysteine/l-cystine influx and erythrocyte GSH level were decreased showing that elevated level of free copper in serum or media decreased l-cysteine/l-cystine influx in human RBC. Copper treatment inhibited L amino acid transporter in normal RBC specifically.  相似文献   

18.
19.
This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary environment, where a set of agents aim to cooperatively minimize the sum of locally time-varying cost functions when the communication graphs are time-changing connected and unbalanced. Based on dual decomposition, we propose a distributed online dual push-sum learning algorithm by incorporating the push-sum protocol into dual gradient method. We then show that the regret bound has a sublinear growth of O(Tp) and the constraint violation is also sublinear with order of O(T1?p/2), where T is the time horizon and 0 < p ≤ 1/2. Finally, simulation experiments on a plug-in electric vehicle charging problem are utilized to verify the performance of the proposed algorithm. The proposed algorithm is adaptive without knowing the total number of iterations T in advance. The convergence results are established on more general unbalanced graphs without the boundedness assumption on dual variables. In addition, more privacy concerns are guaranteed since only dual variables related with coupled constraints are exchanged among agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号