首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was done to assess the levels of glycoconjugates and ceruloplasmin in sera of patients with cervical cancer. Serum hexoses, hexosamines, sialic acid and fucose are elevated in a variety of inflammatory and neoplastic conditions. All the glycoconjugates, except fucose were increased in serum of patients compared to controls. Also, hexoses and sialic acid levels were high in patients with later stages of cancer compared to patients with early stage disease (P=<0.0001, P=0.03). Serum ceruloplasmin was increased in patients with early stage cancer (51.5mg/dl) and with late stage cancer (61mg/dl) compared to controls (38mg/dl). The elevated glycoconjugates may be the result of inflammatory reaction associated with neoplasia, as serum ceruloplasmin (an acute phase reactant) is also increased in these patients.  相似文献   

2.
BackgroundThe harmful effects of type 2 diabetes mellitus and its complications have become a major global public health problem. In this study, the effects of Momordica charantia saponins (MCS) on lipid metabolism, oxidative stress, and insulin signaling pathway in type 2 diabetic rats were investigated.ResultsMCS could attenuate the tendency of weight loss of the model rats. It could also improve glucose tolerance; reduce fasting blood glucose, nonesterified fatty acid, triglyceride, and total cholesterol; and increase the insulin content and insulin sensitivity index of the rats. The activity of superoxide dismutase and catalase increased, and the content of malondialdehyde decreased in the liver and pancreas tissues of rats in MCS-treated groups significantly. In addition, the expression of p-IRS-1 (Y612) and p-Akt (S473) increased, and the expression of p-IRS-1 (S307) decreased in the liver tissues and pancreas tissues of rats in MCS-treated groups significantly.ConclusionMCS has an antidiabetic effect, which may be related to its improving the lipid metabolism disorder, reducing oxidative stress level, and regulating the insulin signaling pathway.How to cite: Jiang S, Xu L, Xu X, et al. Anti-diabetic effect of Momordica charantia saponins in rats induced by high-fat diet combined with STZ. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.12.001.  相似文献   

3.
4.
5.
BackgroundPhospholipase D (PLD) is used as the biocatalyst for phosphatidylserine (PS) production. In general, PLD was expressed in insoluble form in Escherichia coli. High-level soluble expression of PLD with high activity in E. coli is very important for industrial production of PLD.ResultsStreptomyces chromofuscus PLD coding gene was codon-optimized, cloned without signal peptide, and expressed in E. coli. The optimal recombinant E. coli pET-28a+PLD/BL21(DE3) was constructed with pET-28a without His-tag. The highest PLD activity reached 104.28 ± 2.67 U/mL in a 250-mL shake flask after systematical optimization. The highest PLD activity elevated to 122.94 ± 1.49 U/mL by feeding lactose and inducing at 20°C after scaling up to a 5.0-L fermenter. Substituting the mixed carbon source with 1.0 % (w/v) of cheap dextrin and adding a feeding medium could still attain a PLD activity of 105.81 ± 2.72 U/mL in a 5.0-L fermenter. Fish peptone from the waste of fish processing and dextrin from the starch are both very cheap, which were found to benefit the soluble PLD expression.ConclusionsAfter combinatorial optimization, the high-level soluble expression of PLD was fulfilled in E. coli. The high PLD activity along with cheap medium obtained at the fermenter level can completely meet the requirements of industrial production of PLD.How to cite: Wu R, Cao J, Liu F, et al. High-level soluble expression of phospholipase D from Streptomyces chromofuscus in Escherichia coli by combinatorial optimization. Electron J Biotechnol 2021;50.https://doi.org/10.1016/j.ejbt.2020.12.002  相似文献   

6.
7.
BackgroundMilk whey, a byproduct of the dairy industry has a negative environmental impact, can be used as a raw material for added-value compounds such as galactooligosaccharides (GOS) synthesis by β-galactosidases.ResultsB-gal42 from Pantoea anthophila strain isolated from tejuino belonging to the glycosyl hydrolase family GH42, was overexpressed in Escherichia coli and used for GOS synthesis from lactose or milk whey. Crude cell-free enzyme extracts exhibited high stability; they were employed for GOS synthesis reactions. In reactions with 400 g/L lactose, the maximum GOS yield was 40% (w/w) measured by HPAEC-PAD, corresponding to 86% of conversion. This enzyme had a strong predilection to form GOS with β(1 → 6) and β(1 → 3) galactosyl linkages. Comparing GOS synthesis between milk whey and pure lactose, both of them at 300 g/L, these two substrates gave rise to a yield of 38% (60% of lactose conversion) with the same product profile determined by HPAEC-PAD.ConclusionsB-gal42 can be used on whey (a cheap lactose source) to produce added value products such as galactooligosaccharides.How to cite: Yañez-Ñeco CV, Cervantes FV, Amaya-Delgado L, et al. Synthesis of β(1→3) and β(1→6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electron J Biotechnol 2021;49. https://dx.doi.org/10.1016/j.ejbt.2020.10.004  相似文献   

8.
BackgroundIn order to produce an effective callus in Echinacea purpurea L.; determination of the explant type and growth regulators that best respond to callus induction and the optimization of the culture conditions to increase the amount of caffeic acid derivatives (CADs) in the obtained callus. CADs contents of callus cultures of E. purpurea were evaluated by establishing an effective callus induction system in vitro.ResultsVarious medium containing different growth regulators were tested using leaf, petiole, cotyledon and root as the explants. The best callus development was achieved in MS medium with 1.0 mg l−1 2,4-D + 2.0 mg l−1 BAP in leaf, 1.0 mg l−1 NAA + 0.5 mg l−1 TDZ in petiole, 2.0 mg l−1 NAA + 1.0 mg l−1 TDZ in cotyledon and 0.5 mg l−1 NAA + 0.5 mg l−1 BAP in roots. Upon optimisation of callus growth, each type of explant was cultured for 4, 6, 8 and 10 weeks in medium for the analyses of caftaric acid, chlorogenic acid, caffeic acid and chicoric acid contents. The highest amounts of caftaric acid (4.11 mg/g) and chicoric acid (57.89 mg/g) were found from petiole explants and chlorogenic acid (8.83 mg/g) from root explants at the end of the 10-week culture time.ConclusionsAs a result of the present study, the production of caffeic acid derivatives was performed by providing the optimization of E. purpurea L. callus cultures. Effective and repeatable protocols established in this study may offer help for further studies investigating the production of caffeic acid derivatives in vitro.How to cite: Tanur Erkoyuncu M, Yorgancilar M. Optimization of callus cultures at Echinacea purpurea L. for the amount of caffeic acid derivatives. Electron J Biotechnol 2021;51. https://doi.org/10.1016/j.ejbt.2021.02.003.  相似文献   

9.
BackgroundLXYL-P1-2 is the first reported glycoside hydrolase that can catalyze the transformation of 7-β-xylosyl-10-deacetyltaxol (XDT) to 10-deacetyltaxol (DT) by removing the d-xylosyl group at the C-7 position. Successful synthesis of paclitaxel by one-pot method combining the LXYL-P1-2 and 10-deacetylbaccatin III-10-β-O-acetyltransferase (DBAT) using XDT as a precursor, making LXYL-P1-2 a highly promising enzyme for the industrial production of paclitaxel. The aim of this study was to investigate the catalytic potential of LXYL-P1-2 stabilized on magnetic nanoparticles, the surface of which was modified by Ni2+-immobilized cross-linked Fe3O4@Histidine.ResultsThe diameter of matrix was 20–40 nm. The Km value of the immobilized LXYL-P1-2 catalyzing XDT (0.145 mM) was lower than that of the free enzyme (0.452 mM), and the kcat/Km value of immobilized enzyme (12.952 mM s−1) was higher than the free form (8.622 mM s−1). The immobilized form maintained 50% of its original activity after 15 cycles of reuse. In addition, the stability of immobilized LXYL-P1-2, maintained 84.67% of its initial activity, improved in comparison with free form after 30 d storage at 4°C.ConclusionsThis investigation not only provides an effective procedure for biocatalytic production of DT, but also gives an insight into the application of magnetic material immobilization technology.How to citeZou S, Chen TJ, Li DY, et al. LXYL-P1-2 immobilized on magnetic nanoparticles and its potential application in paclitaxel production. Electron J Biotechnol 2021;50.https://doi.org/10.1016/j.ejbt.2020.12.005  相似文献   

10.
BackgroundCecropin P1, acting as an antimicrobial, has a broad-spectrum antibacterial activity with some antiviral and antifungal properties. It is a promising natural alternative to antibiotics which is originally isolated from the pig intestinal parasitic nematode Ascaris suum. Many studies have shown that Cecropin P1 is helpful for the prevention or treatment of clinical diseases. Therefore, it is very necessary to establish a safe, nontoxic, and efficient expression method of Cecropin P1.ResultsThe results indicated that the recombinant protein was about 5.5 kDa showed by Tricine–SDS–PAGE and Western blot. And Cecropin P1 was efficiently secreted and expressed after 12 h of induction, with an increasing yield over the course of the induction. Its maximum concentration was 7.83 mg/L after concentration and purification. In addition, in vitro experiments demonstrated that Cecropin P1 not only exerted a strong inhibitory effect on Escherichia coli, Salmonella sp., Shigella sp., and Pasteurella sp., but also displayed an antiviral activity against PRRSV NADC30-Like strain.ConclusionsCollectively, the strategy of expressing Cecropin P1 in Saccharomyces cerevisiae is harmless, efficient, and safe for cells. In addition, the expressed Cecropin P1 has antiviral and antibacterial properties concurrently.How to cite: Jiang R, Zhang P, Wu X, et al., Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial and antiviral activity in vitro. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2020.12.006  相似文献   

11.
BackgroundThis work studied how the exposure to an unusual substrate forced a change in microbial populations during anaerobic fermentation of crude glycerol, a by-product of biodiesel production, with freshwater sediment used as an inoculum.ResultsThe microbial associations almost completely (99.9%) utilized the glycerol contained in crude glycerol 6 g L−1 within four days, releasing gases, organic acids (acetic, butyric) and alcohols (ethanol, n-butanol) under anaerobic conditions. In comparison with control medium without glycerol, adding crude glycerol to the medium increased the amount of ethanol and n-butanol production and it was not significantly affected by incubation temperature (28 °C or 37 °C), nor incubation time (4 or 8 d), but it resulted in reduced amount of butyric acid. Higher volume of gas was produced at 37 °C despite the fact that the overall bacterial count was smaller than the one measured at 20 °C. Main microbial phyla of the inoculum were Actinobacteria, Proteobacteria and Firmicutes. During fermentation, significant changes were observed and Firmicutes, especially Clostridium spp., began to dominate, and the number of Actinobacteria and Gammaproteobacteria decreased accordingly. Concentration of Archaea decreased, especially in medium with crude glycerol. These changes were confirmed both by culturing and culture-independent (concentration of 16S rDNA) methods.ConclusionsCrude glycerol led to the adaptation of freshwater sediment microbial populations to this substrate. Changes of microbial community were a result of a community adaptation to a new source of carbon.How to cite: Paiders M, Nikolajeva V, Makarenkova G, et al. Changes in freshwater sediment microbial populations during fermentation of crude glycerol. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.10.007  相似文献   

12.
13.
BackgroundLawsonia intracellularis remains a problem for the swine industry worldwide. Previously, we designed and obtained a vaccine candidate against this pathogen based on the chimeric proteins: OMP1c, OMP2c, and INVASc. These proteins formed inclusion bodies when expressed in E. coli, which induced humoral and cellular immune responses in vaccinated pigs. Also, protection was demonstrated after the challenge. In this study, we established a production process to increase the yields of the three antigens as a vaccine candidate.ResultsBatch and fed-batch fermentations were evaluated in different culture conditions using a 2 L bioreactor. A fed-batch culture with a modified Terrific broth medium containing glucose instead of glycerol, and induced with 0.75 mM IPTG at 8 h of culture (11 g/L of biomass) raised the volumetric yield to 627.1 mg/L. Under these culture conditions, plasmid-bearing cells increased by 10% at the induction time. High efficiency in cell disruption was obtained at passage six using a high-pressure homogenizer and a bead mill. The total antigen recovery was 64% (400 mg/L), with a purity degree of 70%. The antigens retained their immunogenicity in pigs, inducing high antibody titers.ConclusionsConsidering that the antigen production process allowed an increment of more than 70-fold, this methodology constitutes a crucial step in the production of this vaccine candidate against L. intracellularis.How to cite: Salazar S, Gutiérrez N, Sánchez O, et al. Establishment of a production process for a novel vaccine candidate against Lawsonia intracellularis. Electron J Biotechnol 2021.https://doi.org/10.1016/j.ejbt.2021.01.002  相似文献   

14.
15.
BackgroundEndometritis is the most common disease of dairy cows and traditionally treated with antibiotics. Lactic acid bacteria can inhibit the growth of pathogens and also have potential for treatment of endometritis. Using PacBio single-molecule real-time sequencing technology, we sequenced the full-length l6S rRNA of the microbiota in uterine mucus samples from 31 cows with endometritis, treated with lactic acid bacteria (experimental [E] group) and antibiotics (control [C] group) separately. Microbiota profiles taken before and after treatment were compared.ResultsAfter both treatments, bacterial species richness was significantly higher than before, but there was no significant difference in bacterial diversity. Abundance of some bacteria increased after both lactic acid bacteria and antibiotic treatment: Lactobacillus helveticus, Lactococcus lactis, Lactococcus raffinolactis, Pseudomonas alcaligenes and Pseudomonas veronii. The bacterial species that significantly decreased in abundance varied depending on whether the cows had been treated with lactic acid bacteria or antibiotics. Abundance of Staphylococcus equorum and Treponema brennaborense increased after lactic acid bacteria treatment but decreased after antibiotic treatment. According to COG-based functional metagenomic predictions, 384 functional proteins were significantly differently expressed after treatment. E and C group protein expression pathways were significantly higher than before treatment (p < 0.05).ConclusionsIn this study, we found that lactic acid bacteria could cure endometritis and restore a normal physiological state, while avoiding the disadvantages of antibiotic treatment, such as the reductions in abundance of beneficial microbiota. This suggests that lactic acid bacteria treatment has potential as an alternative to antibiotics in the treatment of endometritis in cattle.How to cite: Yang L, Huang W, Yang C, et al. Using PacBio sequencing to investigate the effects of treatment with lactic acid bacteria or antibiotics on cow endometritis. Electron J Biotechnol 2021:51. https://doi.org/10.1016/j.ejbt.2021.02.004  相似文献   

16.
BackgroundHong Qu glutinous rice wine (HQGRW) is brewed under non-aseptic fermentation conditions, so it usually has a relatively high total acid content. The aim of this study was to investigate the dynamics of the bacterial communities and total acid during the fermentation of HQGRW and elucidate the correlation between total acid and bacterial communities.ResultsThe results showed that the period of rapid acid increase during fermentation occurred at the early stage of fermentation. There was a negative response between total acid increase and the rate of increase in alcohol during the early fermentation stage. Bacterial community analysis using high-throughput sequencing technology was found that the dominant bacterial communities changed during the traditional fermentation of HQGRW. Both principal component analysis (PCA) and hierarchical clustering analysis revealed that there was a great difference between the bacterial communities of Hong Qu starter and those identified during the fermentation process. Furthermore, the key bacteria likely to be associated with total acid were identified by Spearman's correlation analysis. Lactobacillus, unclassified Lactobacillaceae, and Pediococcus were found, which can make significant contributions to the total acid development (| r | > 0.6 with FDR adjusted P < 0.05), establishing that these bacteria can associate closely with the total acid of rice wine.ConclusionsThis was the first study to investigate the correlation between bacterial communities and total acid during the fermentation of HQGRW. These findings may be helpful in the development of a set of fermentation techniques for controlling total acid.How to cite: Liang Z, Lin X, He Z, et al. Dynamic changes of total acid and bacterial communities during the traditional fermentation of Hong Qu glutinous rice wine. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.12.002  相似文献   

17.
BackgroundL-tert-Leucine has been widely used in pharmaceutical, chemical, and other industries as a vital chiral intermediate. Compared with chemical methods, enzymatic methods to produce L-tert-leucine have unparalleled advantages. Previously, we found a novel leucine dehydrogenase from the halophilic thermophile Laceyella sacchari (LsLeuDH) that showed good thermostability and great potential for the synthesis of L-tert-leucine in the preliminary study. Hence, we manage to use the LsLeuDH coupling with a formate dehydrogenase from Candida boidinii (CbFDH) in the biosynthesis of L-tert-leucine through reductive amination in the present study.ResultThe double-plasmid recombinant strain exhibited higher conversion than the single-plasmid recombinant strain when resting cells cultivated in shake flask for 22 h were used. Under the optimized conditions, the double-plasmid recombinant E. coli BL21 (pETDute-FDH-LDH, pACYCDute-FDH) transformed 1 mol·L-1 trimethylpyruvate (TMP) completely into L-tert-leucine with greater than 99.9% ee within 8 h.ConclusionsThe LsLeuDH showed great ability to biosynthesize L-tert-leucine. In addition, it provided a new option for the biosynthesis of L-tert-leucine.How to citeWang L, Zhu W, Gao Z, et al. Biosynthetic L-tert-leucine using Escherichia coli co-expressing a novel NADH-dependent leucine dehydrogenase and a formate dehydrogenase. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.001  相似文献   

18.
BackgroundOpsonization, is the molecular mechanism by which target molecules promote interactions with phagocyte cell surface receptors to remove unwanted cells by induced phagocytosis. We designed an in vitro system to demonstrate that this procedure could be driven to eliminate adipocytes, using peptides mimicking regions of the complement protein C3b to promote opsonization and enhance phagocytosis. Two cell lines were used: (1) THP-1 monocytes differentiated to macrophages, expressing the C3b opsonin receptor CR1 in charge of the removal of unwanted coated complexes; (2) 3T3-L1 fibroblasts differentiated to adipocytes, expressing AQP7, to evaluate the potential of peptides to stimulate opsonization. (3) A co-culture of the two cell lines to demonstrate that phagocytosis could be driven to cell withdrawal with high efficiency and specificity.ResultsAn array of peptides were designed and chemically synthesized p3691 and p3931 joined bound to the CR1 receptor activating phagocytosis (p < 0.033) while p3727 joined the AQP7 protein (p < 0.001) suggesting that opsonization of adipocytes could occur. In the co-culture system p3980 and p3981 increased lipid uptake to 91.2% and 89.0%, respectively, as an indicator of potential adipocyte phagocytosis.ConclusionsThis in vitro model could help understand the receptor–ligand interaction in the withdrawal of unwanted macromolecules in vivo. The adipocyte-phagocytosis discussed may help to control obesity, since peptides of C3b stimulated the CR1 receptor, promoting opsonisation and phagocytosis of lipid-containing structures, and recognition of AQP7 in the differentiated adipocytes, favored the phagocytic activity of macrophages, robustly supported by the co-culture strategy.How to cite: Bartsch IM, Perelmuter K, Bollati-Fogolin M, et al. An in vitro model mimicking the complement system to favor directed phagocytosis of unwanted cells. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.09.010.  相似文献   

19.
20.
BackgroundRice sheath blight (caused by Rhizoctonia solani) and tobacco mosaic virus are very important plant diseases, causing a huge loss in global crop production. Paenibacillus kribbensis PS04 is a broad-spectrum biocontrol agent, used for controlling these diseases. Previously, extracellular polysaccharides (EPS) from P. kribbensis PS04 had been purified and their structure was inferred to be fructosan. This study aimed to evaluate the effects of exogenous EPS treatment on plant–pathogen interactions.ResultsPlant defense genes such as phenylalanine ammonia-lyase, catalase, chitinase, allene oxide synthase, and PR1a proteins were significantly induced by exogenous EPS treatment. Moreover, subsequent challenge of EPS-pretreated plants with the pathogens (R. solani or tobacco mosaic virus) resulted in higher expression of defense-associated genes. Increased activities of defense-associated enzymes, total phenols, and flavonoids were also observed in EPS pretreated plants. The contents of malondialdehyde in plants, which act as indicator of lipid peroxidation, were reduced by EPS treatment.ConclusionsThis study comprehensively showed that EPS produced from P. kribbensis PS04 enhances disease resistance in plants by the activation of defense-associated genes as well as through the enhancement of activities of defense-related enzymes.How to citeCanwei S, Xiaoyun H, Ahmed N, et al. Fructosan form Paenibacillus kribbensis PS04 enhance disease resistance against Rhizoctonia solani and tobacco mosaic virus. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号