首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conventional microfluidic H filter is modified with multi-insulating blocks to achieve a flow-through manipulation and separation of microparticles. The device transports particles by exploiting electro-osmosis and electrophoresis, and manipulates particles by utilizing dielectrophoresis (DEP). Polydimethylsiloxane (PDMS) blocks fabricated in the main channel of the PDMS H filter induce a nonuniform electric field, which exerts a negative DEP force on the particles. The use of multi-insulating blocks not only enhances the DEP force generated, but it also increases the controllability of the motion of the particles, facilitating their manipulation and separation. Experiments were conducted to demonstrate the controlled flow direction of particles by adjusting the applied voltages and the separation of particles by size under two different input conditions, namely (i) a dc electric field mode and (ii) a combined ac and dc field mode. Numerical simulations elucidate the electrokinetic and hydrodynamic forces acting on a particle, with theoretically predicted particle trajectories in good agreement with those observed experimentally. In addition, the flow field was obtained experimentally with fluorescent tracer particles using the microparticle image velocimetry (μ-PIV) technique.  相似文献   

2.
Lewpiriyawong N  Yang C 《Biomicrofluidics》2012,6(1):12807-128079
The recent development of microfluidic “lab on a chip” devices requires the need to continuously separate submicron particles. Here, we present a PDMS microfluidic device with sidewall conducting PDMS (AgPDMS) composite electrodes capable of separating submicron particles in hydrodynamic flow. In particular, the device can service dual functions. First, the AgPDMS composite electrodes embedded in a sidewall of the device channel allow for performing AC-dielectrophoretic (DEP) characterization through direct microscopic observation of particle behavior. Characterization experiments are carried out for numerous parameters including particle size, medium conductivity, and AC field frequency to reveal important dielectrophoresis DEP information in terms of the crossover frequency and positive/negative DEP behavior under specific frequencies. Second, the device offers an advantage that sidewall AgPDMS composite electrodes can produce strong DEP effects throughout the entire channel height, and thus the robustness of the on-chip particle separation is demonstrated for continuous separation in a flowing mixture of 0.5 and 5 μm particles with 100% separation efficiency.  相似文献   

3.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.  相似文献   

4.
Dielectric particles flowing through a microfluidic channel over a set of coplanar electrodes can be simultaneously capacitively detected and dielectrophoretically (DEP) actuated when the high (1.45 GHz) and low (100 kHz–20 MHz) frequency electromagnetic fields are concurrently applied through the same set of electrodes. Assuming a simple model in which the only forces acting upon the particles are apparent gravity, hydrodynamic lift, DEP force, and fluid drag, actuated particle trajectories can be obtained as numerical solutions of the equations of motion. Numerically calculated changes of particle elevations resulting from the actuation simulated in this way agree with the corresponding elevation changes estimated from the electronic signatures generated by the experimentally actuated particles. This verifies the model and confirms the correlation between the DEP force and the electronic signature profile. It follows that the electronic signatures can be used to quantify the actuation that the dielectric particle experiences as it traverses the electrode region. Using this principle, particles with different dielectric properties can be effectively identified based exclusively on their signature profile. This approach was used to differentiate viable from non-viable yeast cells (Saccharomyces cerevisiae).  相似文献   

5.
Dielectrophoresis (DEP), the phenomenon of directed motion of electrically polarizable particles in a nonuniform electric field, is promising for applications in biochemical separation and filtration. For colloidal particles in suspension, the relaxation of the ionic species in the shear layer gives rise to a frequency-dependent, bidirectional DEP force in the radio frequency range. However, quantification methods of the DEP force on individual particles with the pico-Newton resolution required for the development of theories and design of device applications are lacking. We report the use of optical tweezers as a force sensor and a lock-in phase-sensitive technique for analysis of the particle motion in an amplitude modulated DEP force. The coherent detection and sensing scheme yielded not only unprecedented sensitivity for DEP force measurements, but also provided a selectivity that clearly distinguishes the pure DEP force from all the other forces in the system, including electrophoresis, electro-osmosis, heat-induced convection, and Brownian forces, all of which can hamper accurate measurements through other existing methods. Using optical tweezers-based force transducers already developed in our laboratory, we have results that quantify the frequency-dependent DEP force and the crossover frequency of individual particles with this new experimental method.  相似文献   

6.
This paper presents a mathematical model for laser-induced rapid electro-kinetic patterning (REP) to elucidate the mechanism for concentrating particles in a microchannel non-destructively and non-invasively. COMSOL®(v4.2a) multiphysics software was used to examine the effect of a variety of parameters on the focusing performance of the REP. A mathematical model of the REP was developed based on the AC electrothermal flow (ACET) equations, the dielectrophoresis (DEP) equation, the energy balance equation, the Navier-Stokes equation, and the concentration-distribution equation. The medium was assumed to be a diluted solute, and different electric potentials and laser illumination were applied to the desired place. Gold (Au) electrodes were used at the top and bottom of a microchannel. For model validation, the simulation results were compared with the experimental data. The results revealed the formation of a toroidal microvortex via the ACET effect, which was generated due to laser illumination and joule-heating in the area of interest. In addition, under some conditions, such as the frequency of AC, the DEP velocity, and the particle size, the ACET force enhances and compresses resulting in the concentration of particles. The conditions of the DEP velocity and the ACET velocity are presented in detail with a comparison of the experimental results.  相似文献   

7.
This paper presents a field-flow method for separating particle populations in a dielectrophoretic (DEP) chip with asymmetric electrodes under continuous flow. The structure of the DEP device (with one thick electrode that defines the walls of the microfluidic channel and one thin electrode), as well as the fabrication and characterization of the device, was previously described. A characteristic of this structure is that it generates an increased gradient of electric field in the vertical plane that can levitate the particles experiencing negative DEP. The separation method consists of trapping one population to the bottom of the microfluidic channel using positive DEP, while the other population that exhibits negative DEP is levitated and flowed out. Viable and nonviable yeast cells were used for testing of the separation method.  相似文献   

8.
A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S∕m), apple juice (0.225 S∕m), and milk (0.525 S∕m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and rapid particle capture from lower conductivity (0.05 S∕m) medium is observed. Using DEP chambers above 150 μm in height, the onset of a global fluid motion for high conductivity media is observed. This motion enhances particle capture on the electrodes at the center of the DEP chamber. The n-DEP electrodes are designed to have well defined electric field minima, enabling sample concentration at 1000 distinct locations within the chip. The electrode design also facilitates integration of immunoassay and other surface sensors onto the particle capture sites for rapid detection of target micro-organisms in the future.  相似文献   

9.
A multi-functional microfluidic platform was fabricated to demonstrate the feasibility of on-chip electroporation integrated with dielectrophoresis (DEP) and alternating-current-electro-osmosis (ACEO) assisted cell/particle manipulation. A spatial gradient of electroporation parameters was generated within a microchamber array and validated using normal human dermal fibroblast (NHDF) cells and red fluorescent protein-expressing human umbilical vein endothelial cells (RFP-HUVECs) with various fluorescent indicators. The edge of the bottom electrode, coinciding with the microchamber entrance, may act as an on-demand gate, functioning under either positive or negative DEP. In addition, at sufficiently low activation frequencies, ACEO vortices can complement the DEP to contribute to a rapid trapping/alignment of particles. As such, results clearly indicate that the microfluidic platform has the potential to achieve high-throughput screening for electroporation with spatial control and uniformity, assisted by DEP and ACEO manipulation/trapping of particles/cells into individual microchambers.  相似文献   

10.
A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles. Theoretical modelling of the electric field gradients generated by different electrode designs has also reached an advanced state. Advances in the technology include the development of sophisticated electrode designs, along with the introduction of new materials (e.g., silicone polymers, dry film resist) and methods for fabricating the electrodes and microfluidics of DEP devices (photo and electron beam lithography, laser ablation, thin film techniques, CMOS technology). Around three-quarters of the 300 or so scientific publications now being published each year on DEP are directed towards practical applications, and this is matched with an increasing number of patent applications. A summary of the US patents granted since January 2005 is given, along with an outline of the small number of perceived industrial applications (e.g., mineral separation, micropolishing, manipulation and dispensing of fluid droplets, manipulation and assembly of micro components). The technology has also advanced sufficiently for DEP to be used as a tool to manipulate nanoparticles (e.g., carbon nanotubes, nano wires, gold and metal oxide nanoparticles) for the fabrication of devices and sensors. Most efforts are now being directed towards biomedical applications, such as the spatial manipulation and selective separation∕enrichment of target cells or bacteria, high-throughput molecular screening, biosensors, immunoassays, and the artificial engineering of three-dimensional cell constructs. DEP is able to manipulate and sort cells without the need for biochemical labels or other bioengineered tags, and without contact to any surfaces. This opens up potentially important applications of DEP as a tool to address an unmet need in stem cell research and therapy.  相似文献   

11.
Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier–Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian–Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of cylindrical particles even in a straight microchannel with uniform cross-sectional area. A comprehensive parametric study indicates that cylindrical particles would experience an oscillatory motion under low electric fields. However, they are aligned with their longest axis parallel to the imposed electric field under high electric fields due to the induced DEP effect.  相似文献   

12.
We introduce a method for improved dielectrophoretic (DEP) discrimination and separation of viable and nonviable yeast cells. Due to the higher cell wall permeability of nonviable yeast cells compared with their viable counterpart, the cross-linking agent glutaraldehyde (GLT) is shown to selectively cross-link nonviable cells to a much greater extent than viable yeast. The DEP crossover frequency (cof) of both viable and nonviable yeast cells was measured over a large range of buffer conductivities (22 μS∕cm–400 μS∕cm) in order to study this effect. The results indicate that due to selective nonviable cell cross-linking, GLT modifies the DEP cof of nonviable cells, while viable cell cof remains relatively unaffected. To investigate this in more detail, a dual-shelled oblate spheroid model was evoked and fitted to the cof data to study cell electrical properties. GLT treatment is shown to minimize ion leakage out of the nonviable yeast cells by minimizing changes in cytoplasm conductivity over a large range of ionic concentrations. This effect is only observable in nonviable cells where GLT treatment serves to stabilize the cell cytoplasm conductivity over a large range of buffer conductivity and allow for much greater differences between viable and nonviable cell cofs. As such, by taking advantage of differences in cell wall permeability GLT magnifies the effect DEP has on the field induced separation of viable and nonviable yeasts.  相似文献   

13.
An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius–Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques.  相似文献   

14.
Dielectrophoresis (DEP) has been shown to have significant potential for the characterization of cells and could become an efficient tool for rapid identification and assessment of microorganisms. The present work is focused on the trapping, characterization, and separation of two species of Cryptosporidium (C. parvum and C. muris) and Giardia lambia (G. lambia) using a microfluidic experimental setup. Cryptosporidium oocysts, which are 2-4 μm in size and nearly spherical in shape, are used for the preliminary stage of prototype development and testing. G. lambia cysts are 8–12 μm in size. In order to facilitate effective trapping, simulations were performed to study the effects of buffer conductivity and applied voltage on the flow and cell transport inside the DEP chip. Microscopic experiments were performed using the fabricated device and the real part of Clausius—Mossotti factor of the cells was estimated from critical voltages for particle trapping at the electrodes under steady fluid flow. The dielectric properties of the cell compartments (cytoplasm and membrane) were calculated based on a single shell model of the cells. The separation of C. muris and G. lambia is achieved successfully at a frequency of 10 MHz and a voltage of 3 Vpp (peak to peak voltage).  相似文献   

15.
Li H  Ye T  Lam KY 《Biomicrofluidics》2011,5(2):21101
The motion trajectory and deformation behavior of a neutral red blood cell (RBC) in a microchannel subjected to an externally applied nonuniform electric field are numerically investigated, where both the membrane mechanical force and the dielectrophoresis (DEP) force are considered. The simulation results demonstrate that the DEP force is significantly influenced by several factors, namely, the RBC size, electrode potential, electric frequency, RBC permittivity, and conductivity, which finally results in the different behaviors of the cell motion and deformation in the nonuniform electric field.  相似文献   

16.
An optoelectronic microdevice is set up to drive single microparticles and a maximum synchronous velocity (MS-velocity) spectrum method is proposed for quantifying the frequency-dependent behaviors of individual neutral microparticles from 40 kHz to 10 MHz. Dielectrophoretic behaviors of three types of microparticles are investigated under the optically induced nonuniform electric field. Different MS-velocity spectra for the three different particles are experimentally found. Numerical calculations for the MS-velocity spectra of polystyrene microparticles are performed. The spectrum of the MS-velocities for a specific particle is mainly determined by the particle inherent property and the electric characteristics of the device. Moreover the experimental and the numerical MS-velocity spectra are compared to be accordant. Based on the dielectrophoretic (DEP) behaviors of the particles under a nonuniform electric field, microparticles can be finely characterized or distinguished according to their distinct MS-velocity spectra.  相似文献   

17.
In this study, a continuous flow dielectrophoresis (DEP) microfluidic chip was fabricated and utilized to sort out the microalgae (C. vulgaris) with different lipid contents. The proposed separation scheme is to allow that the microalgae with different lipid contents experience different negative or no DEP force at the separation electrode pair under the pressure-driven flow. The microalgae that experience stronger negative DEP will be directed to the side channel while those experience less negative or no DEP force will pass through the separation electrode pair to remain in the main channel. It was found that the higher the lipid content inside the microalgae, the higher the crossover frequency. Separation of the microalgae with 13% and 21% lipid contents, and 24% and 30%–35% lipid contents was achieved at the operating frequency 7 MHz, and 10 MHz, respectively. Moreover, separation can be further verified by measurement of the fluorescence intensity of the neutral lipid inside the sorted algal cells.  相似文献   

18.
Dielectrophoresis (DEP) is an electrokinetic motion of dielectrically polarized materials in nonuniform electric fields. DEP has been successfully applied to manipulation of nanomaterials including carbon nanotubes (CNTs), metallic nanoparticles, and semiconducting nanowires. Under positive DEP force, which attracts nanomaterials toward the higher field region, nanomaterials are trapped in the electrode gap and automatically establish good electrical connections between them and the external measuring circuit. This feature allows us a fast, simple, and low-cost fabrication of nanomaterial-based sensors based on a bottom-up approach. This paper first presents a theoretical background of DEP phenomena and then reviews recent works of the present author, which were aimed to develop nanomaterial-based sensors, such as a CNT gas sensor and a ZnO nanowire photosensor, using DEP fabrication technique. It is also demonstrated that DEP technique enables self-formation of interfaces between various nanomaterials, which can be also applicable as novel sensing transducers.  相似文献   

19.
Field-free particle focusing in microfluidic plugs   总被引:1,自引:0,他引:1  
Kurup GK  Basu AS 《Biomicrofluidics》2012,6(2):22008-2200810
Particle concentration is a key unit operation in biochemical assays. Although there are many techniques for particle concentration in continuous-phase microfluidics, relatively few are available in multiphase (plug-based) microfluidics. Existing approaches generally require external electric or magnetic fields together with charged or magnetized particles. This paper reports a passive technique for particle concentration in water-in-oil plugs which relies on the interaction between particle sedimentation and the recirculating vortices inherent to plug flow in a cylindrical capillary. This interaction can be quantified using the Shields parameter (θ), a dimensionless ratio of a particle’s drag force to its gravitational force, which scales with plug velocity. Three regimes of particle behavior are identified. When θ is less than the movement threshold (region I), particles sediment to the bottom of the plug where the internal vortices subsequently concentrate the particles at the rear of the plug. We demonstrate highly efficient concentration (∼100%) of 38 μm glass beads in 500 μm diameter plugs traveling at velocities up to 5 mm/s. As θ is increased beyond the movement threshold (region II), particles are suspended in well-defined circulation zones which begin at the rear of the plug. The length of the zone scales linearly with plug velocity, and at sufficiently large θ, it spans the length of the plug (region III). A second effect, attributed to the co-rotating vortices at the rear cap, causes particle aggregation in the cap, regardless of flow velocity. Region I is useful for concentrating/collecting particles, while the latter two are useful for mixing the beads with the solution. Therefore, the two key steps of a bead-based assay, concentration and resuspension, can be achieved simply by changing the plug velocity. By exploiting an interaction of sedimentation and recirculation unique to multiphase flow, this simple technique achieves particle concentration without on-chip components, and could therefore be applied to a range of heterogeneous screening assays in discrete nl plugs.  相似文献   

20.
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号