首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正事件美国科研人员于今年2月11日宣布,激光干涉引力波天文台(LIGO)在2015年9月首次探测到引力波,从而证实了爱因斯坦100年前的预测。引力波的发现有可能使天文学领域发生革命性的变化。爱因斯坦当初认为引力波太过微弱而无法探测,而他也从未相信过黑洞的存在。不过,我想他并不介意自己在这些问题上弄错了。——德国马克斯普朗克引力物理研究所所长布鲁斯·艾伦引力波提供了一种人们看待宇宙的全新方式。(人类)探测到引力波的这种能力,很有可  相似文献   

2.
青岑 《科技新时代》2004,(1):108-109
1918年,爱因斯坦根据广义相对论预言了引力波的存在。就像光波是电磁力的载体一样,引力波就是万有引力的载体。例如,太阳和地球之间就是通过引力波传递引力子而实现引力相互作用的。引力波的存在与否是广义相对论的又一个关键性验证。引力波的传播速度为光速。这是电磁力与引力问又一个  相似文献   

3.
爱因斯坦广义相对论将引力场和时空结构联系起来。它指出,质量的存在导致时空弯曲(图1)。广义相对论曾给出四个著名的预言:光线弯曲、引力红移、黑洞存在和引力波存在。引力波存在是广义相对论最重要的预言,对爱因斯坦引力波的探测是近一个世纪以来最重大的基础探索项目之一。引力波存在的间接证据是由Hulse和Taylor首先得到的。1974年,他们  相似文献   

4.
日本专家组成的一个研究小组研制出迄今为止制造的精准度最高的原子钟。这台光晶格钟灵敏度极高,能够探测到地球引力发生的变化,允许科学家测量时间的精度达到令人吃惊的17位数。此外,它也可用于大幅改进GPS跟踪系统,探测最小10厘米的高度差。研究小组表示,这是朝着研制人类历史上最为精确的测量装置迈出的重要一步。原子钟用于设定国际原子时间或者协  相似文献   

5.
正探测引力波的装置与迈克尔逊-莫雷干涉仪的原理类似,当两束激光路程不一致时,便会产生干涉现象,通过观察干涉条纹,便可进行精确测距。只不过激光干涉引力波探测器的干涉臂超长,有几百米、几千米,甚至更长……  相似文献   

6.
2016年2月11日,激光干涉引力波天文台(LIGO)实验组宣布直接观测到由两颗恒星级黑洞在10多亿年前并合产生的引力波。这一实验结果不仅是对100年前爱因斯坦创立广义相对论所预言的引力波的一次直接验证,更为人类开启了探索宇宙的一个新窗口,也为深入研究超越爱因斯坦广义相对论的量子引力理论提供了实验基础。  相似文献   

7.
海外传真     
正科学家再次探测到引力波信号"我们又探测到了一个引力波事件。"6月16日,在美国天文学会第228次会议的新闻发布会上,美国激光干涉仪引力波天文台科学合作组织发言人加布里埃拉·冈萨雷斯正式公布这一消息,并在现场播放了他们捕捉到的引力波的声音。尽管这次信号比首次探测到的引力波信号要弱不少,但其置信度高达5希格玛。这是他们自从今年2月宣布首次探测到引力波信号  相似文献   

8.
你有没有想过,在地球成为生命家园的过程中,木星扮演了一个极其重要的角色?忙碌的太空交警木星距离地球6.28亿公里,是地球与太阳之间距离的4倍。地球上的生命和木星有什么关系呢?天文学家认为,在把水送到地球和把小行星及彗星对地球的破坏性撞击减轻至最低程度方面,木星功不可没。它的强大引力将诸如彗星这样的太空碎片清除得干干净净,为生命在地球上的演化创造了一个安全的环境。综观太阳系的历史,木星曾经扰乱了无数天体的运行轨道。由于木星的质量是地球的318倍,所以其产生的引力非常大。1994年7月,舒马克—利维9号彗星被木星所吸引,偏离…  相似文献   

9.
<正>2014年3月17日,美国哈佛大学史密森天体物理中心的科学家宣布,通过建立在南极的BICEP2望远镜,他们首次探测到来自宇宙大爆炸时期产生的引力波证据。这一发现对于帮助我们了解宇宙的起源以及发展具有极其重要的意义,因此引起了广泛的关注。一个苹果引出的"宇宙级难题"人类对于引力的理解,始于牛顿的那个苹果。在牛顿的万有引力理论中并没有时间因子,这意味着引力是一种瞬时传播的超距作用。根据  相似文献   

10.
人类目前的探测器要想探测几光年之外的星球,都需要飞行上万年,等探测器万年以后到达的时候,即使能够把探测那个星球的信息传递回来,地球上也许已经是桑田变沧海。不过,纳米专家的一些想法倒是很有吸引力。他们的想法是,发射一个探测器到小行星带上,最  相似文献   

11.
话登月今昔     
月球是距离地球最近的天体,在人类掌握航天技术之后,第一个要拜访的地外星球自然就是月球了。从1959年起,美苏等国陆续发射了多个无人或载人月球探测器。有些国家还拟在21世纪初建立载人月球基地。人类为什么要热衷探测月球呢?探测它有什么意义呢?  相似文献   

12.
1916年"引力波"一词出现在爱因斯坦的文章中,2016年2月科学家公布了直接探测引力波的实验结果。这一消息令世界轰动,这一刻仿佛科学仅仅意味着相对论,爱因斯坦就是科学之神,他的影响力再次君临世界。如果说科学事业也是浪漫的,那么它的浪漫如春燕衔泥筑巢一般,建立在科学家仔细、认真又大胆的一步步艰难的研究工作之上。引力波这一足够专门的研究也是如此。其理论探索一直论争纷扰,但也稳步前进;其实验研究除了耗资巨大,需要地利、人和外,还要依赖适当的天机。科学家的不懈努力终于由间接验证到直接探测,达到了实验研究的一个圆满新阶段。大众需要了解和知道的是,引力波与电磁波不同,它至少目前看来不会直接影响人们的衣食住行。引力波的发现所具有的更多是科学理论层面上的价值与意义。  相似文献   

13.
迪迪的生日就要到了,可是迪迪一点也不开心。原来,迪迪的生日是11月2日,属于天蝎座,而天蝎座的守护神是冥王星。大家都知道,冥王星在今年的8月24日由原来的大行星降级为矮行星,所以,迪迪很担心冥王星的降级也会影响到自己的命运。听了迪迪的话,闹闹哈哈大笑:“你真是愚昧无知!冥王星与地球的距离是如此遥远,它对地球的任何物理作用(例如引力、磁场)完全可以忽略不计,它怎么可能对你产生影响呢?更何况冥王星被降级,只是人为决定的,冥王星本身没有发生任何变化。”“可是,我看到星座上的有些预言真的很灵验呀!”迪迪还是有些担心,并拿出一本关…  相似文献   

14.
正2016年2月11日,美国科学家宣布成功探测到两个黑洞并合时释放出的引力波。这是人类首次直接探测到被科学界期待已久、由爱因斯坦提出的引力波的存在,标志着人类向破解宇宙诞生奥秘前进了一大步。"时空涟漪"突现身1916年,科学泰斗爱因斯坦在创立广义相对论后不久又提出引力波存在的预言。这里所说的引力波,实质  相似文献   

15.
地球是太阳系九大行星之一,按离太阳由近及远的次序为第三颗.它有一个天然卫星--月球,二者组成一个天体系统--地月系统.地球自西向东自转,同时围绕太阳公转.地球自转与公转运动的结合产生了地球上的昼夜交替和四季变化.地球自转的速度是不均匀的.同时,由于日、月、行星的引力作用以及大气、海洋和地球内部物质的各种作用,使地球自转轴在空间和地球本体内的方向都要产生变化.  相似文献   

16.
《科技风》2014,(14):1-2
围绕着引力波的探测,研究者之间的竞争十分激烈,因为直接探测到引力波将开启天文学研究领域的新纪元。但无论怎样,随着时间的推移,引力波探测正在不断取得进展,LIGO的科学家对通过观测中子星探测引力波一事越来越乐观。  相似文献   

17.
从人造卫星的发射到星际航行地球与任何物体之间都有吸引力,所以投掷一个物体出去,由于地球引力的作用,最后仍会落回到地面上来。但是,我们发现,离开地面愈远,引力愈小,远到一定程度,引力就几乎没有了。另一方面,如果往上投掷物体,速度愈大,物体就升得愈高。所以,只要物体的速度超过了某一个限度,它就可以一直跑出地球引力的范围以外,再也不会落到地面上来。我们把这个速度叫做“逃脱速度”,科学家们根据计算知道,它的大小是每  相似文献   

18.
Science     
正引力波Science封面:两颗中子星相互旋转。Science杂志第6370期封面文章报道了双中子星并合事件,这是2017年度十大突破之一。2017年8月17日,美国和意大利的探测器发现了来自这一事件的引力波。几秒钟后,一颗卫星发现了伽马射线暴,70多个天文台随后对每一个波长的后果进行了研究。该双星系统位于距离我们约40兆秒差距的地方,由两个质量分别为1.1和1.6个  相似文献   

19.
人要称一下自己体重的话非常简单,只要往体重秤上一站就行了。而要给行星这样的庞然大物称重该怎样做呢?显然用秤是不行的。过去,要准确称量行星质量就必须发射过去一个探测器才行。探测器从行星旁飞过的时候,轨道是由行星施加给它的引力决定的,根据轨道计算出引力的大小也就可以得到行星的质量了。这种方法显然  相似文献   

20.
引力把人锁在地球上无论你跳得多高,你终究要跌回地球,这是人的基本常识。是什么把人给困住了?苹果为什么总是朝地面掉落,而不是飞到天上去呢?地球是球形的,人为什么不会"掉"入太空,相反却能在地面上行动自如呢?当电梯升起时,人的脚为什么会感到有一个向上的力呢?……这些问题的惟一答案就是——地球的引力作用。牛顿回答道:任何两个物体间都有相互引力,引力的大小同它们的质量乘积成正比,与它们距离的平方成反比。这就是万有引力定律。我们每个人都会受到引力影响,也许很多人都没有在意,但是,引力对人体乃至地球的影响是非…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号