首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
In this article, an adaptive fuzzy control method is proposed for induction motors (IMs) drive systems with unknown backlash-like hysteresis. First, the stochastic nonlinear functions existed in the IMs drive systems are resolved by invoking fuzzy logic systems. Then, a finite-time command filter technique is exploited to overcome the obstacle of “explosion of complexity” emerged in the classical backstepping procedure during the controller design process. Meanwhile, the effect of the filter errors generated by command filters is decreased by utilizing corresponding error compensating mechanism. To cope with the influence of backlash-like hysteresis input, an auxiliary system is constructed, in which the output signal is applied to compensate the effect of the hysteresis. The finite-time control technology is adopted to accelerate the response speed of the system and reduce the tracking error, and the stochastic disturbance and backlash-like hysteresis are considered to improve control accuracy. It’s shown that the tracking error can converge to a small neighborhood around the origin in finite-time under the constructed controller. Finally, the availability of the presented approach is validated through simulation results.  相似文献   

2.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

3.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

4.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

5.
This paper develops a robust adaptive neural network (NN) tracking control scheme for a class of strict-feedback nonlinear systems with unknown nonlinearities and unknown external disturbances under input saturation. The radial basis function NNs with minimal learning parameter (MLP) are employed to online approximate the uncertain system dynamics. The adaptive laws are designed to online update the upper bound of the norm of ideal NN weight vectors, and the sum of the bounds of NN approximation errors and external disturbances, respectively. An auxiliary dynamic system is constructed to generate the augmented error signals which are used to modify the adaptive laws for preventing the destructive action due to the input saturation. Moreover, the command filtering backstepping control method is utilized to overcome the shortcoming of dynamic surface control method, the tracking-differentiator-based control method, etc. Our proposed scheme is qualified for simultaneously dealing with the input saturation effect, the heavy computational burden and the “explosion of complexity” problems. Theoretical analysis illuminates that our scheme ensures the boundedness of all signals in the closed-loop systems. Simulation results on two examples verify the effectiveness of our developed control scheme.  相似文献   

6.
This paper proposes a new adaptive region tacking control scheme with nonlinear error transformation for underwater vehicles based on barrier Lyapunov functions. In the new scheme, a redefinition of the tracking error is given by introducing nonlinear error transformation in prescribed performance control. Although the results created by the new scheme indicate a slight decrease in the tracking precision, the real tracking error will be still kept within the prescribed performance functions, while the control signals also become smoother, compared with the original prescribed performance control scheme. Then an approximation form of the control input with constraints, together with an improved Nussbaum function, is designed to derive the control law for underwater vehicles with thruster saturation and dead zone. Furthermore, a new velocity error variable is given by introducing an auxiliary variable to compensate the effect from thruster saturation. Finally, it is proved that the nonlinear system is semi-global practical finite-time stable and the tracking error is always kept within the prescribed boundaries. The effectiveness of the proposed region tracking control scheme is validated through simulation-based case studies on an underwater vehicle with measurement noise.  相似文献   

7.
This study presents an output backstepping control architecture based on command filter via Multilayer-Neural-Network Pre-Observer with compensator to realise the reference signal tracking of an arbitrarily switching nonlinear systems with nonseperated parameter. First, a multilayer neural network pre-observer is designed before backstepping procedures to servo reconstruct the system states which can not be obtained directly. The pre-observer has superior performance in neutralizing the states abrupt chattering caused by the arbitrarily switching parameter entered in the nonlinear structure. Next, observer error compensation mechanism is designed to compensate the state estimation and shrink the approximation error domain further. Then, the backstepping controller with compensation signal based on command filter is presented to realise the stable reference signal tracking. Last, the proposed control scheme guarantees the states of the closed-loop system bounded. This mechanism makes up the shortcoming of the traditional state observer and give more flexibility in reconstructing the systems states timely, then overcomes the obstacle of the arbitrarily switching parameterized system. Furthermore, compared with the existing traditional uniform robust uncertain controller, the developed backstepping control method combining with the pre-observer not only guarantees the states servo reconstruction and servo control of the switched system, but also improves the tracking performance. Finally, a low-velocity servo turnable switched system is extensively simulated to demonstrate the effectiveness of the developed controller.  相似文献   

8.
This paper proposes a finite-time command filtered backstepping guidance law (FCFBGL) with the terminal angle constraint while accounting for the input saturation and the autopilot dynamics. To eliminate the adverse effect induced by the filtering errors and the acceleration saturation, a new finite-time error compensation mechanism is integrated in the guidance law design. The proposed FCFBGL not only guarantees the the line-of-sight (LOS) angle error to converge to a small neighborhood of the origin in finite time but also achieves the continuity of the input signal. in finite time. Moreover, with the aid of the fractional power extended state observer (FPESO), the proposed FCFBGL requires no information on the target acceleration and the acceleration derivative of the missile, which is preferable in the practical application. The finite-time stability of the proposed guidance law is derived with the Lyapunov methodology. Simulation results illustrate the effectiveness and superiority of the proposed guidance law.  相似文献   

9.
This research addresses the problem of finite-time tracking error constrained control for a class of non-strict stochastic nonlinear systems with unknown time-varying powers and multiple power terms. Based on the conversion from constrained tracking error to an unconstrained signal with the same effect, by adopting the backstepping technique together with adaptive neural network control, a controller with upper and lower time-varying power bounds is designed to meet the prescribed performance control scheme in finite-time. Finally, two simulation examples are shown to verify the effectiveness of the commendatory control method.  相似文献   

10.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

11.
This paper uses the directed communication topology to investigate the finite-time error constraint containment control for multiple Ocean Bottom Flying Node (OBFN) systems with thruster faults. The OBFN is a benthic Autonomous Underwater Vehicle (AUV), which has been used to explore submarine resources. The model uncertainties, velocity error constraint, external disturbances, and thruster faults of OBFNs motivate the design of containment controller. Moreover, some followers could obtain the states of leader OBFNs. We designed the command filter and the input signal is a hyperbolic tangent function. The virtual velocity error command is generated to follow the velocity error. Then the novel velocity error constraint distributed control algorithm is developed. Furthermore, for the problem of input saturation, by designing a stable anti-saturation compensator, an improved containment algorithm is proposed. It is proved that both the proposed approaches can converge the containment errors towards zero through Lyapunov theory in finite time, which means the followers can reach the convex hull formed by leaders in finite time. Finally, simulation results demonstrate the effectiveness of the two strategies.  相似文献   

12.
Actuator faults often occur in physical systems, which seriously affect the transient performance and control accuracy of the system. For the finite-time consensus tracking problem of multiple Lagrangian systems with actuator faults and preset error constraints, a novel distributed fault-tolerant controller is proposed in this paper. The proposed controller is developed based on the barrier Lyapunov function method and the adding a power integrator technique, which can not only guarantee the steady-state performance of the system but also its transient performance. Due to its strong sensitivity to the variation of system errors, the proposed controller can quickly eliminate the system initial errors and the error perturbations caused by actuator faults. That is, the controller can guarantee that the consensus error converges to zero in a finite time and is always constrained within the preset error bound. Finally, the effectiveness of the developed controller is verified by simulation of a multi-manipulator system.  相似文献   

13.
A practical finite-time command filtered backstepping control method is proposed in this paper for a microwave plasma chemical vapor deposition (MPCVD) reactor system. The MPCVD reactor system is modeled as a coupled nonlinear system with unknown control direction functions and unknown nonlinearities. To address the unknown nonlinearities, novel practical finite-time command filters are proposed to construct the estimations of such nonlinearities. On the other hand, an equivalent augmented system of the reactor system is proposed to address the design challenges that posed by the system unknown control direction functions. Additionally, it can be concluded that the proposed control method ensures practical finite-time stability of the reactor system tracking errors by using the practical finite-time Lyapunov stability criterion. Finally, the effectiveness of the approach is demonstrated through the simulation results.  相似文献   

14.
This article investigates the adaptive neural network fixed-time tracking control issue for a class of strict-feedback nonlinear systems with prescribed performance demands, in which the radial basis function neural networks (RBFNNs) are utilized to approximate the unknown items. First, an modified fractional-order command filtered backstepping (FOCFB) control technique is incorporated to address the issue of the iterative derivation and remove the impact of filtering errors, where a fractional-order filter is adopted to improve the filter performance. Furthermore, an event-driven-based fixed-time adaptive controller is constructed to reduce the communication burden while excluding the Zeno-behavior. Stability results prove that the designed controller not only guarantees all the signals of the closed-loop system (CLS) are practically fixed-time bounded, but also the tracking error can be regulated to the predefined boundary. Finally, the feasibility and superiority of the proposed control algorithm are verified by two simulation examples.  相似文献   

15.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

16.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

17.
This paper studies the problem of finite-time formation tracking control for networked nonaffine nonlinear systems with unmeasured dynamics and unknown uncertainties/disturbances under directed topology. A unified distributed control framework is proposed by integrating adaptive backstepping control, dynamic gain control and dynamic surface control based on finite-time theory and consensus theory. Auxiliary dynamics are designed to construct control gains with non-Lipschitz dynamics so as to guarantee finite-time convergence of formation errors. Adaptive control is used to compensate for uncertain control efforts of the transformed systems derived from original nonaffine systems. It is shown that formation tracking is achieved during a finite-time period via the proposed controller, where fractional power terms are only associated with auxiliary dynamics instead of interacted information among the networked nonlinear systems in comparison with most existing finite-time cooperative controllers. Moreover, the continuity of the proposed controller is guaranteed by setting the exponents of fractional powers to an appropriate interval. It is also shown that the improved dynamic surface control method could guarantee finite-time convergence of formation errors, which could not be accomplished by conventional dynamic surface control. Finally, simulation results show the effectiveness of the proposed control scheme.  相似文献   

18.
This paper explores the design of an anti-saturation adaptive finite-time control strategy with the neural network (NN) technique for the space circumnavigation mission. Before executing the controller design, the analytical solutions of the desired angular velocity and its derivative of the active spacecraft are calculated. Since there are uncertain saturation constraints on control forces and moments in the actual propulsion system, an auxiliary system compensated by an adaptive NN is adopted. The modified auxiliary system no longer needs the precise output values of the actuators. Besides, the hyperbolic tangent function is introduced to design the weight update law for the NN compensator, so that the derivative of the weight estimator will not be amplified by the quadratic of states when the system states are large. It is proved that tracking errors of the system states can converge to a residual set of the origin in finite time. Simulation results show that the maximum amplitudes of the control signals are greatly reduced compared to the classical non-singular terminal sliding-mode control scheme, and that the neural-based compensator can significantly weaken the overshoot and chattering.  相似文献   

19.
This paper considers the topic of adaptive leader-following fault-tolerant tracking control for a class of non-strict feedback nonlinear multi-agent systems with or without state constraints in a unified solution. Through the use of certain transformation techniques, the original constraint system is recast as a new completely unconstrained system. Compared with the existing results, the limitation that the constraint functions need upper bound is relaxed. By employing radial basis function neural networks (RBFNNs) to approximate the unknown functions. A novel adaptive fault-tolerant consensus tracking control (CTC) manner is raised with command filtered backstepping design. Then, through the Lyapunov stability analysis, the proposed scheme can ensure all signals in the closed-loop system are cooperative semi-globally uniformly ultimately bounded (SGUUB). Finally, simulation example confirms the efficiency of the proposed method.  相似文献   

20.
This paper investigates the finite-time cooperative circumnavigation control of multiple second-order agents, in which the agents should surround a moving target with desired formation and circular velocity based on local information. Firstly, the controller design is transformed into design control parameters such that the error system, including distance error, speed error and angle error, is finite-time consensus. The error system is viewed as a cascaded system containing two second-order subsystems, and then a distributed finite-time controller composed of two parts is delivered. The finite-time stability of the entire system is given by employing cascaded control theory. One significant advantage of the proposed controller is that it allows the agents to converge to desired trajectory in a finite time instead of asymptotically. Another merit is that the desired formation is an extensive case and unlimited, including different tracking radii and angular spacing. Furthermore, the proposed controller can be implemented by each agent in its local frame, utilizing only local information. These properties significantly extend the application scope of cooperative circumnavigation. Finally, simulations are carried out to validate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号