首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This article describes a fabrication process for the generation of a leak proof paper based microfluidic device and a new design strategy for convenient incorporation of externally prepared test zones. Briefly, a negative photolithographic method was used to prepare the device with a partial photoresist layer on the rear of the device to block the leakage of sample. Microscopy and Field Emission Scanning Electron Microscopy data validated the formation of the photoresist layer. The partial layer of photoresist on the device channel limits sample volume to 7 ± 0.2 μl as compared to devices without the partial photoresist layer which requires a larger sample volume of 10 ± 0.1 μl. The design prototype with a customized external test zone exploits the channel protrusions on the UV exposed photoresist treated paper to bridge the externally applied test zone to the sample and absorbent zones. The partially laminated device with an external test zone has a comparatively low wicking speed of 1.8 ± 0.9 mm/min compared to the completely laminated device with an inbuilt test zone (3.3 ± 1.2 mm/min) which extends the reaction time between the analyte and reagents. The efficacy of the prepared device was studied with colorimetric assays for the non-specific detection of protein by tetrabromophenol blue, acid/base with phenolphthalein indicator, and specific detection of proteins using the HRP-DAB chemistry. The prepared device has the potential for leak proof detection of analyte, requires low sample volume, involves reduced cost of production (∼$0.03, excluding reagent and lamination cost), and enables the integration of customized test zones.  相似文献   

2.
A novel microfluidic device which consists of two stages for particle focusing and separation using a viscoelastic fluid has been developed. A circular capillary tube was used for three-dimensional particle pre-alignment before the separation process, which was inserted in a polydimethylsiloxane microchannel. Particles with diameters of 5 and 10 μm were focused at the centerline in the capillary tube, and the location of particles was initialized at the first bifurcation. Then, 5 and 10 μm particles were successfully separated in the expansion region based on size-dependent lateral migration, with ∼99% separation efficiency. The proposed device was further applied to separation of MCF-7 cells from leukocytes. Based on the cell size distribution, an approximate size cutoff for separation was determined to be 16 μm. At 200 μl/min, 94% of MCF-7 cells were separated with the purity of ∼97%. According to the trypan blue exclusion assay, high viability (∼90%) could be achieved for the separated MCF-7 cells. The use of a commercially available capillary tube enables the device to be highly versatile in dealing with particles in a wide size range by using capillary tubes with different inner diameters.  相似文献   

3.
An on-chip actuation transmitter for achieving fast and accurate cell manipulation is proposed. Instead of manipulating cell position by a directly connected macro-scale pump, polydimethylsiloxane deformation is used as a medium to transmit the actuation generated from the pump to control the cell position. This actuation transmitter has three main advantages. First, the dynamic response of cell manipulation is faster than the conventional method with direct flow control based on both the theoretical modeling and experimental results. The cell can be manipulated in a simple harmonic motion up to 130 Hz by the proposed actuation transmitter as opposed to 90 Hz by direct flow control. Second, there is no need to fill the syringe pump with the sample solution because the actuation transmitter physically separates the fluids between the pump and the cell flow, and consequently, only a very small quantity of the sample is required (<1 μl). In addition, such fluid separation makes it easy to keep the experiment platform sterilized because there is no direct fluid exchange between the sample and fluid inside the pump. Third, the fabrication process is simple because of the single-layer design, making it convenient to implement the actuation transmitter in different microfluidic applications. The proposed actuation transmitter is implemented in a lab-on-a-chip system for red blood cell (RBC) evaluation, where the extensibility of red blood cells is evaluated by manipulating the cells through a constriction channel at a constant velocity. The application shows a successful example of implementing the proposed transmitter.  相似文献   

4.
A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate.  相似文献   

5.
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young''s modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh''s hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment.  相似文献   

6.
We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power.  相似文献   

7.
We describe a scalable artificial bilayer lipid membrane platform for rapid electrophysiological screening of ion channels and transporters. A passive pumping method is used to flow microliter volumes of ligand solution across a suspended bilayer within a microfluidic chip. Bilayers are stable at flow rates up to ∼0.5 μl/min. Phospholipid bilayers are formed across a photolithographically defined aperture made in a dry film resist within the microfluidic chip. Bilayers are stable for many days and the low shunt capacitance of the thin film support gives low-noise high-quality single ion channel recording. Dose-dependent transient blocking of α-hemolysin with β-cyclodextrin (β-CD) and polyethylene glycol is demonstrated and dose-dependent blocking studies of the KcsA potassium channel with tetraethylammonium show the potential for determining IC50 values. The assays are fast (30 min for a complete IC50 curve) and simple and require very small amounts of compounds (100 μg in 15 μl). The technology can be scaled so that multiple bilayers can be addressed, providing a screening platform for ion channels, transporters, and nanopores.  相似文献   

8.
We propose a blood separation microfluidic device suitable for point-of-care (POC) applications. By utilizing the high gas permeability of polydimethylsiloxane (PDMS) and phaseguide structures, a simple blood separation device is presented. The device consists of two main parts. A separation chamber with the phaseguide structures, where a sample inlet, a tape-sealed outlet, and a dead-end ring channel are connected, and pneumatic chambers, in which manually operating syringes are plugged. The separation chamber and pneumatic chambers are isolated by a thin PDMS wall. By manually pulling out the plunger of the syringe, a negative pressure is instantaneously generated inside the pneumatic chamber. Due to the gas diffusion from the separation chamber to the neighboring pneumatic chamber through the thin permeable PDMS wall, low pressure can be generated, and then the whole blood at the sample inlets starts to be drawn into the separation chamber and separated through the phaseguide structures. Reversely, after removing the tape at the outlet and manually pushing in the plunger of the syringe, a positive pressure will be created which will cause the air to diffuse back into the ring channel, and therefore allow the separated plasma to be recovered at the outlet on demand. In this paper, we focused on the study of the plasma separation and associated design parameters, such as the PDMS wall thickness, the air permeable overlap area between the separation and pneumatic chambers, and the geometry of the phaseguides. The device required only 2 μl of whole blood but yielding approximately 0.38 μl of separated plasma within 12 min. Without any of the requirements of sophisticated equipment or dilution techniques, we can not only separate the plasma from the whole blood for on-chip analysis but also can push out only the separated plasma to the outlet for off-chip analysis.  相似文献   

9.
We developed a microfluidic device to culture cellular spheroids of controlled sizes and suitable for live cell imaging by selective plane illumination microscopy (SPIM). We cocultured human umbilical vein endothelial cells (HUVECs) within the spheroids formed by hepatocellular carcinoma cells, and studied the distributions of the HUVECs over time. We observed that the migration of HUVECs depended on the size of spheroids. In the spheroids of ∼200 μm diameters, HUVECs migrated outwards to the edges within 48 h; while in the spheroids of ∼250 μm diameters, there was no outward migration of the HUVECs up to 72 h. In addition, we studied the effects of pro-angiogenic factors, namely, vascular endothelial growth factor (VEGF) and fibroblast growth factor (β-FGF), on the migration of HUVECs in the carcinoma cell spheroid. The outward migration of HUVECs in 200 μm spheroids was hindered by the treatment with VEGF and β-FGF. Moreover, some of the HUVECs formed hollow lumen within 72 h under VEGF and β-FGF treatment. The combination of SPIM and microfluidic devices gives high resolution in both spatial and temporal domains. The observation of HUVECs in spheroids provides us insight on tumor vascularization, an ideal disease model for drug screening and fundamental studies.  相似文献   

10.
In this report, we demonstrate a simple and low cost method that can be reproducibly used for fabrication of microfluidic devices in nitrocellulose. The fluidic patterns are created via a laser-based direct-write technique that induces polymerisation of a photo-polymer previously impregnated in the nitrocellulose. The resulting structures form hydrophobic barriers that extend through the thickness of the nitrocellulose and define an interconnected hydrophilic fluidic-flow pattern. Our experimental results show that using this method it is possible to achieve microfluidic channels with lateral dimensions of ∼100 μm using hydrophobic barriers that form the channel walls with dimensions of ∼60 μm; both of these values are considerably smaller than those that can be achieved with other current techniques used in the fabrication of nitrocellulose-based fluidic devices. A simple grid patterned nitrocellulose device was then used for the detection of C-reactive protein via a sandwich enzyme-linked immunosorbent assay, which served as a useful proof-of-principle experiment.  相似文献   

11.
Genetic sequence and hyper-methylation profile information from the promoter regions of tumor suppressor genes are important for cancer disease investigation. Since hyper-methylated DNA (hm-DNA) is typically present in ultra-low concentrations in biological samples, such as stool, urine, and saliva, sample enrichment and amplification is typically required before detection. We present a rapid microfluidic solid phase extraction (μSPE) system for the capture and elution of low concentrations of hm-DNA (≤1 ng ml−1), based on a protein-DNA capture surface, into small volumes using a passive microfluidic lab-on-a-chip platform. All assay steps have been qualitatively characterized using a real-time surface plasmon resonance (SPR) biosensor, and quantitatively characterized using fluorescence spectroscopy. The hm-DNA capture/elution process requires less than 5 min with an efficiency of 71% using a 25 μl elution volume and 92% efficiency using a 100 μl elution volume.  相似文献   

12.
Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl–800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%–17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.  相似文献   

13.
This paper presents a spheroid chip in which three-dimensional (3D) tumor spheroids are not only formed by gravity-driven cell aggregation but also cultured at the perfusion rates controlled by balanced droplet dispensing without fluidic pumps. The previous spheroid chips require additional off-chip processes of spheroid formation and extraction as well as bulky components of fluidic pumps. However, the present spheroid chip, where autonomous medium droplet dispensers are integrated on a well array, achieves the on-chip 3D tumor spheroid formation and perfusion culture using simple structure without bulky fluidic pumps. In the experimental study, we demonstrated that the spheroid chip successfully forms 3D tumor spheroids in the wide diameter range of 220 μm–3.2 mm (uniformity > 90%) using H358, H23, and A549 non-small cell lung cancer cells. At the pump-less perfusion culture (Q = 0.1–0.3 μl/min) of spheroids, the number of H358 cells in the spheroid increased up to 50% from the static culture (Q = 0 μl/min) and the viability of the cultured cells also increased about 10%. Therefore, we experimentally verified that the perfusion environment created by the spheroid chip offers a favourable condition to the spheroids with high increase rate and viability. The present chip achieves on-chip 3D tumor spheroid formation and pump-less perfusion culture with simple structure, thereby exhibiting potential for use in integrated in-vivo-like cell culture systems.  相似文献   

14.
Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force (FDEP) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).  相似文献   

15.
Deterministic lateral displacement (DLD) is a microfluidic size-based particle separation or filter technology with applications in cell separation and enrichment. Currently, there are no cost-effective manufacturing methods for this promising microfluidic technology. In this fabrication paper, however, we develop a simple, yet robust protocol for thermoplastic DLD devices using regulatory-approved materials and biocompatible methods. The final standalone device allowed for volumetric flow rates of 660 μl min−1 while reducing the manufacturing time to <1 h. Optical profilometry and image analysis were employed to assess manufacturing accuracy and precision; the average replicated post height was 0.48% less than the average post height on the master mold and the average replicated array pitch was 1.1% less than the original design with replicated posts heights of 62.1 ± 5.1 μm (mean ± 6 standard deviations) and replicated array pitches of 35.6 ± 0.31 μm.  相似文献   

16.
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.  相似文献   

17.
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.  相似文献   

18.
Blood cell sorting is critical to sample preparation for both clinical diagnosis and therapeutic research. The spiral inertial microfluidic devices can achieve label-free, continuous separation of cell mixtures with high throughput and efficiency. The devices utilize hydrodynamic forces acting on cells within laminar flow, coupled with rotational Dean drag due to curvilinear microchannel geometry. Here, we report on optimized Archimedean spiral devices to achieve cell separation in less than 8 cm of downstream focusing length. These improved devices are small in size (<1 in.2), exhibit high separation efficiency (∼95%), and high throughput with rates up to 1 × 106 cells per minute. These device concepts offer a path towards possible development of a lab-on-chip for point-of-care blood analysis with high efficiency, low cost, and reduced analysis time.  相似文献   

19.
A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm2. A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times.  相似文献   

20.
In recent years, there has been a dramatic increase in the use of poly(dimethylsiloxane) (PDMS) devices for cell-based studies. Commonly, the negative tone photoresist, SU8, is used to pattern features onto silicon wafers to create masters (SU8-Si) for PDMS replica molding. However, the complexity in the fabrication process, low feature reproducibility (master-to-master variability), silane toxicity, and short life span of these masters have been deterrents for using SU8-Si masters for the production of cell culture based PDMS microfluidic devices. While other techniques have demonstrated the ability to generate multiple devices from a single master, they often do not match the high feature resolution (∼0.1 μm) and low surface roughness that soft lithography masters offer. In this work, we developed a method to fabricate epoxy-based masters that allows for the replication of features with high fidelity directly from SU8-Si masters via their PDMS replicas. By this method, we show that we could obtain many epoxy based masters with equivalent features to a single SU8-Si master with a low feature variance of 1.54%. Favorable feature transfer resolutions were also obtained by using an appropriate Tg epoxy based system to ensure minimal shrinkage of features ranging in size from ∼100 μm to <10 μm in height. We further show that surface coating epoxy masters with Cr/Au lead to effective demolding and yield PDMS chambers that are suitable for long-term culturing of sensitive primary hippocampal neurons. Finally, we incorporated pillars within the Au-epoxy masters to eliminate the process of punching media reservoirs and thereby reducing substantial artefacts and wastage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号