首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this article, a nonlinear iterative learning controller (NILC) is developed using an iterative dynamic linearization (IDL) and a parameter iterative learning identification technique. First, the ideal NILC is transformed into a linear parameterized form by using a controller-oriented compact form IDL (controller-CFIDL) technique. Then an iterative learning identification approach is presented for tuning the parameters of the proposed controller using real-time I/O data. For the sake of analysis, a linear data model of the nonlinear plant is obtained by using the system-oriented IDL technology and a corresponding system parameter identification algorithm is developed in iteration domain. The convergence analysis is provided for the dynamically linearized nonlinear and nonaffine discrete-time system. The results are further extended by using a controller-oriented partial form iterative dynamic linearization (controller-PFIDL) method to gain a higher-order NILC utilizing additional control information from previous iterations. Simulations of two examples show the effectiveness of the proposed methods.  相似文献   

2.
The present work aims to develop a novel adaptive iterative learning control(AILC) method for nonlinear multiple input multiple output (MIMO) systems that execute various control missions with iteration-varying magnitude-time scales. In order to reduce the variations of the systems, this work proposes a series of time scaling transformations to normalize the iteration-varying trial lengths. An AILC scheme is then developed for the transformed control systems on a uniform trial length, which is shown to be capable of ensuring the asymptotic convergence of the tracking error. In other words, the proposed AILC algorithm is able to relax the constraint in conventional ILC where the control task must remain the same in the iteration domain. Additionally, the basic assumption in classic ILC that the control system must repeat on a fixed finite period is also removed. The convergence analysis of the AILC is derived rigorously according to the composite energy function (CEF) methodology. It is shown that the newly developed learning control strategy works well for control plants with either time-invariant or time-varying parametric uncertainties. To show the effectiveness of the AILC, three examples are illustrated in the end. Meanwhile, the proposed learning method is also implemented to a traditional XY table system.  相似文献   

3.
In this work, a lifted event-triggered iterative learning control (lifted ETILC) is proposed aiming for addressing all the key issues of heterogeneous dynamics, switching topologies, limited resources, and model-dependence in the consensus of nonlinear multi-agent systems (MASs). First, we establish a linear data model for describing the I/O relationships of the heterogeneous nonlinear agents as a linear parametric form to make the non-affine structural MAS affine with respect to the control input. Both the heterogeneous dynamics and uncertainties of the agents are included in the parameters of the linear data model, which are then estimated through an iterative projection algorithm. On this basis, a lifted event-triggered learning consensus is proposed with an event-triggering condition derived through a Lyapunov function. In this work, no threshold condition but the event-triggering condition is used which plays a key role in guaranteeing both the stability and the iterative convergence of the proposed lifted ETILC. The proposed method can reduce the number of control actions significantly in batches while guaranteeing the iterative convergence of tracking error. Both rigorous analysis and simulations are provided and confirm the validity of the lifted ETILC.  相似文献   

4.
The control of the MIMO system has become increasingly famous. However, most of the literature considers the linear system. This paper considers a non-linear MIMO wave equation. The control method proposed in this paper is the ILC controller with initial conditions unfixed. The chosen schemes in this paper are the PD-type ILC and the D-type ILC. Moreover, we give sufficient conditions to guarantee the methods’ convergence. Finally, we present a simulation result on a specific numerical example to prove the effectiveness of the proposed control law with a comparison between both schemes.  相似文献   

5.
Most of the available results of iterative learning control (ILC) are that solve the consensus problem of lumped parameter models multi-agent systems. This paper considers the consensus control problem of distributed parameter models multi-agent systems with time-delay. By using the knowledge between neighboring agents, considering time-delay problem in the multi-agent systems, a distributed P-type iterative learning control protocol is proposed. The consensus error between any two agents in the sense of L2 norm can converge to zero after enough iterations based on proposed ILC law. And then we extend these conclusions to Lipschitz nonlinear case. Finally, the simulation result shows the effectiveness of the control method.  相似文献   

6.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

7.
This paper uses repetitive process stability theory to design robust iterative learning control law for linear discrete systems with multiple time-delays and polytopic uncertainty. Both dynamic and static forms of the control law are considered and used when designing robust iterative learning control schemes. Also, based on the generalized Kalman-Yakubovich-Popov Lemma, the proposed design procedures a required frequency attenuation over a finite frequency range and the monotonic trial-to-trial error convergence. Moreover, linear matrix inequality techniques are applied to formulate the convergence conditions and to obtain formulas for the control law designs. Finally, an illustrative numerical simulation example is given and concludes the paper.  相似文献   

8.
This paper proposes a novel model free adaptive iterative learning control scheme for a class of unknown nonlinear systems with randomly varying iteration lengths. By applying the dynamic linearization technique along the iteration axis, such systems can be transformed into iteration-depended time varying linear systems. Then, an improved model free adaptive iterative learning control scheme can be constructed only using input and output data of the system. From the rigorous theoretical analysis, it is shown that the mathematical expectation of tracking errors converge to zero as iteration increases. This design does not require any dynamic information of the ILC systems and prior information of randomly varying iteration lengths. An illustrative example verifies the effectiveness of the proposed design.  相似文献   

9.
In this paper, an iterative learning control strategy is presented for a class of nonlinear pure-feedback systems with initial state error using fuzzy logic system. The proposed control scheme utilizes fuzzy logic systems to learn the behavior of the unknown plant dynamics. Filtered signals are employed to circumvent algebraic loop problems encountered in the implementation of the existing controllers. Backstepping design technique is applied to deal with system dynamics. Based on the Lyapunov-like synthesis, we show that all signals in the closed-loop system remain bounded over a pre-specified time interval [0,T]. There even exist initial state errors, the norm of tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity and the learning speed can be easily improved if the learning gain is large enough. A time-varying boundary layer is introduced to solve the problem of initial state error. A typical series is introduced in order to deal with the unknown bound of the approximation errors. Finally, two simulation examples show the feasibility and effectiveness of the approach.  相似文献   

10.
This paper investigates a new adaptive iterative learning control protocol design for uncertain nonlinear multi-agent systems with unknown gain signs. Based on Nussbaum gain, adaptive iterative learning control protocols are designed for each follower agent and the adaptive laws depend on the information available from the agents in the neighbourhood. The proper protocols guarantee each follower agent track the leader perfectly on the finite time interval and the Nussbaum-type item can seek control direction adaptively. Furthermore, the formation problem is studied as an extension. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method in this article.  相似文献   

11.
This paper deals with the problem of iterative learning control algorithm for a class of multi-agent systems with distributed parameter models. And the considered distributed parameter models are governed by the parabolic or hyperbolic partial differential equations. Based on the framework of network topologies, a consensus-based iterative learning control protocol is proposed by using the nearest neighbor knowledge. When the iterative learning control law is applied to the systems, the consensus errors between any two agents on L2 space are bounded, and furthermore, the consensus errors on L2 space can converge to zero as the iteration index tends to infinity in the absence of initial errors. Simulation examples illustrate the effectiveness of the proposed method.  相似文献   

12.
In this paper, we apply iterative learning control to both linear and nonlinear fractional-order multi-agent systems to solve consensus tacking problem. Both fixed and iteration-varying communicating graphs are addressed in this paper. For linear systems, a PDα-type update law with initial state learning mechanism is introduced by virtue of the memory property of fractional-order derivative. For nonlinear systems, a Dα-type update law with forgetting factor and initial state learning is designed. Sufficient conditions for both linear and nonlinear systems are established to guarantee all agents achieving the asymptotic output consensus. Simulation examples are provided to verify the proposed schemes.  相似文献   

13.
For multi-agent system (MAS), most of existing iterative learning control (ILC) algorithms consider about the tracking of reference defined over the whole trial interval, while the point-to-point (P2P) task, where the emphasis is placed on the tracking of intermediate time points, has not been explored. Thus, a distributed ILC method is proposed, in which each agent updates the feedforward control input by learning from the experience of itself and its neighbors in previous repeated tasks to achieve the goal of improving performance. In addition, for the sake of reducing the burden of data transmission in MAS, effective data quantization is essential. In this case, the quantitative measurement of the error of the tracking time points is further used in the ILC updating law. In order to accommodate this requirement, a distributed point-to-point iterative learning control (P2PILC) with tracking error quantization for MAS is first proposed in this paper. A necessary and sufficient condition is presented for the asymptotical stability of the proposed algorithm, and simulation results show the effectiveness of it finally.  相似文献   

14.
Aiming at the problems of unstable batch control of key crystal quality parameters and susceptibility to batch-to-batch non-repetitive disturbances during repeated operation of single crystal furnaces, this paper proposes a data-driven iterative learning model predictive control method based on an adaptive iterative extended state observer (IESO) for designing melt temperature and crystal diameter learning controllers with disturbance suppression. By applying dynamic linearization techniques and model predictive control strategies along the iterative axis, an ILMPC scheme with disturbance compensation terms using only input and output data of the system is designed. Among them, adaptive IESO is used to estimate the disturbance compensation terms. Then, the theoretical analysis shows that the tracking error of the ILMPC scheme can converge to a bounded range as the number of iterations increases. The experimental results verify the effectiveness of the proposed control method, which not only ensures that the control system has learning ability, but also achieves stable and accurate control of crystal quality parameters.  相似文献   

15.
This paper deals with the problem of iterative learning control for a class of singular systems with one-sided Lipschitz nonlinearity. In order to track the given desired trajectory, a closed-loop D-type learning algorithm is proposed for such nonlinear singular systems. Then the convergence result is derived by utilizing the one-sided Lipschitz and quadratically inner-bounded conditions. In this work, the main contribution is to apply the iterative learning approach to one-sided Lipschitz singular systems, while most researches are focus on the Lipschitz systems. It is shown that the algorithm can guarantee the system output converges to the desired trajectory on the whole time interval. Finally, the effectiveness of the presented algorithm is verified by a numerical example.  相似文献   

16.
This study considers the main challenges of presenting an iterative observer under a data-driven framework for nonlinear nonaffine multi-agent systems (MASs) that can estimate nonrepetitive uncertainties of initial states and disturbances by using the information from previous iterations. Consequently, an observer-based iterative learning control is proposed for the accurate consensus tracking. First, the dynamic effect of nonrepetitive initial states is transformed as a total disturbance of the linear data model which is developed to describe I/O iteration-dynamic relationship of nonlinear nonaffine MASs. Second, the measurement noises are considered as the main uncertainty of system output. Then, we present an iterative disturbance observer to estimate the total uncertainty caused by the nonrepetitive initial shifts and measurement noises together. Next, we further propose an observer-based switching iterative learning control (OBSILC) using the iterative disturbance observer to compensate the total uncertainty and an iterative parameter estimator to estimate unknown gradient parameters. The proposed OBSILC consists of two learning control algorithms and the only difference between the two is that an iteration-decrement factor is introduced in one of them to further reduce the effect of the total uncertainty. These two algorithms are switched to each other according to a preset error threshold. Theoretical results are demonstrated by the simulation study. The proposed OBSILC can reduce the influence of nonrepetitive initial values and measurement noises in the iterative learning control for MASs by only using I/O data.  相似文献   

17.
A solution of the periodic problem in a nonlinear system comprising a single-valued symmetric nonlinearity (Lure system) and linear dynamics is presented. The solution is designed as an iterative application of Periodic Signal Mapping to refine the approximate solution obtained through the describing function method. The algorithm is based upon the transformation of the original nonlinear system into an equivalent nonlinear system for which the filtering hypothesis is satisfied exactly, and for that reason the latter being suitable for application of the developed algorithm. The solution sought for is a fixed point of the periodic signal mapping. Conditions of asymptotic convergence of the proposed algorithm are given. The proposed approach is illustrated by two examples of analysis of periodic motions in a relay feedback system and chattering in a terminal sliding mode.  相似文献   

18.
The terminal iterative learning control is designed for nonlinear systems based on neural networks. A terminal output tracking error model is obtained by using a system input and output algebraic function as well as the differential mean value theorem. The radial basis function neural network is utilized to construct the input for the system. The weights are updated by optimizing an objective function and an auxiliary error is introduced to compensate the approximation error from the neural network. Both time-invariant input case and time-varying input case are discussed in the note. Strict convergence analysis of proposed algorithm is proved by the Lyapunov like method. Simulations based on train station control problem and batch reactor are provided to demonstrate the effectiveness of the proposed algorithms.  相似文献   

19.
This paper is concerned with integrated event-triggered fault estimation (FE) and sliding mode fault-tolerant control (FTC) for a class of discrete-time Lipschtiz nonlinear networked control systems (NCSs) subject to actuator fault and disturbance. First, an event-triggered fault/state observer is designed to estimate the system state and actuator fault simultaneously. And then, a discrete-time sliding surface is constructed in state-estimation space. By the use of a reformulated Lipschitz property and delay system analysis method, the sliding mode dynamics and state/fault error dynamics are converted into a unified linear parameter varying (LPV) networked system model by taking into account the event-triggered scheme, actuator fault, external disturbance and network-induced delay. Based on this model and with the aid of Lyapunov–Krasovskii functional method, a delay-dependent sufficient condition is derived to guarantee the stability of the resulting closed-loop system with prescribed H performance. Furthermore, an observed-based sliding mode FTC law is synthesized to make sure the reachability of the sliding surface. Finally, simulation results are conducted to verify the effectiveness of the proposed method.  相似文献   

20.
In this paper, the consensus problem of multi-agent systems with general linear dynamics is studied. Motivated by the MIMO communication technique, a general framework is considered in which different state variables are exchanged in different independent interaction topologies. This novel framework could improve the control system design flexibility and potentially improve the system performance. Fully distributed consensus control laws are proposed and analyzed for the settings of fixed and switching multiple topologies. The control law can be applied using only local information. And the control gain can be designed depending on the dynamics of the individual agent. By transforming the overall multi-agent systems into cascade systems, necessary and sufficient conditions are provided to guarantee the consensus of the overall systems under fixed and switching state variable dependent topologies, respectively. Two simulation examples are provided to illustrate the effectiveness of the proposed theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号