首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
This paper deals with the input–output finite-time stabilization problem for Markovian jump systems (MJSs) with incompletely known transition rates. An observer-based output feedback controller is constructed to study the input–output finite-time stability (IO-FTS) problem. By using the mode-dependent Lyapunov–krasovskii functional method, a sufficient criterion checking the IO-FTS problem is provided. Then, an observer and a corresponding state feedback controller for the individual subsystem are respectively designed to solve the input–output finite-time stabilization problem for the systems. Finally, a numerical example on the mass-spring system model is investigated to bring out the advantages of the control scheme proposed in this paper.  相似文献   

2.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

3.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

4.
In this paper, the problem of output feedback robust H control for spacecraft rendezvous system with parameter uncertainties, disturbances and input saturation is investigated. Firstly, a full-order state observer is designed to reconstruct the full state information, whose gain matrix can be obtained by solving the linear matrix inequality (LMI). Subsequently, by combining the parametric Riccati equation approach and gain scheduled technique, an observer-based robust output feedback gain scheduled control scheme is proposed, which can make full use of the limited control capacity and improve the control performance by scheduling the control gain parameter increasingly. Rigorous stability analyses are shown that the designed discrete gain scheduled controller has faster convergence performance and better robustness than static gain controller. Finally, the performance and advantage of the proposed gain scheduled control scheme are demonstrated by numerical simulation.  相似文献   

5.
This paper deals with the containment control problem for multi-agent systems with exogenous disturbances. A disturbance observer-based control approach is employed to estimate the disturbances generated by an exogenous system. Consequently, distributed disturbance observer-based containment control protocols are proposed by using the state feedback control and the output feedback control, respectively. Furthermore, with the help of algebraic graph theory and Lyapunov stability theory, sufficient conditions are established to ensure that multi-agent systems with exogenous disturbances can achieve containment control via the disturbance observer-based approach. Finally, the effectiveness of our theoretical results is verified by providing numerical simulation examples.  相似文献   

6.
This paper proposes an observer-based fuzzy adaptive output feedback control scheme for a class of uncertain single-input and single-output (SISO) nonlinear stochastic systems with quantized input signals and arbitrary switchings. The SISO system under consideration contains completely unknown nonlinear functions, unmeasured system states and quantized input signals quantized by a hysteretic quantizer. By adopting a new nonlinear disposal of the quantized input, the relationship between the control input and the quantized input is established. The hysteretic quantizer that we take can effectively avoid the chattering phenomena. Furthermore, the introduction of a linear observer makes the estimation of the states possible. Based on the universal approximation ability of the fuzzy logic systems (FLSs) and backstepping recursive design with the common stochastic Lyapunov function approach, a quantized output feedback control scheme is constructed, where the dynamic surface control (DSC) is explored to alleviate the computation burden. The proposed control scheme cannot only guarantee the boundedness of signals but also make the output of the system converge to a small neighborhood of the origin. The simulation results are exhibited to demonstrate the validity of the control scheme.  相似文献   

7.
This paper investigates the observer-based consensus control for high-order nonlinear multi-agent systems (MASs) under denial-of-service (DoS) attacks. When the DoS attacks appear, the communication channels are destroyed, and the blocked information may ruin the consensus of MASs. A switched state observer is designed for the followers to observe the leader’s state whether the DoS attacks occur or not. Then, a dynamic event-triggered condition is proposed to reduce the consumption of communication resources. Moreover, an observer-based and dynamic event-triggered controller is formulated to achieve leader-following consensus through the back-stepping method. Additionally, the boundedness of all closed-loop signals is obtained based on the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the presented control strategy under DoS attacks.  相似文献   

8.
This paper proposes an adaptive observer-based neural controller for a class of uncertain large-scale stochastic nonlinear systems with actuator delay and time-delay nonlinear interactions, where drift and diffusion terms contain all state variables of their own subsystem. First, a state observer is established for estimating the unmeasured states, and a predictor-like term is utilized to transform the input delayed system into the delay-free system. Second, novel appropriate Lyapunov–Krasovskii functionals are used to compensate the time-delay terms, and neural networks are employed to approximate unknown nonlinear functions. At last, an output-feedback adaptive neural control scheme is constructed by using Lyapunov stability theory and backstepping technique. It is shown that the designed neural controller can ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error is driven to a small neighborhood of the origin. The simulation results are presented to further show the effectiveness of the proposed approach.  相似文献   

9.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

10.
In this paper, an observer-based adaptive control problem for a class of high-order switched nonlinear systems in non-strict feedback form with fuzzy dead zone and arbitrary switchings is investigated. Fuzzy logic system was utilized to model the unknown nonlinear function with the universal approximation ability. An adaptive high-order observer is constructed to estimate unavailable state variables. The effect of dead zone can be eliminated by a Nussbaum function. By using the Lyapunov stability theory and backstepping design procedure, the proposed adaptive controller can guarantee all the variables in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB). Simulation results are exhibited to demonstrate the effectiveness of the proposed control scheme.  相似文献   

11.
In this study, the problem of observer-based control for a class of nonlinear systems using Takagi-Sugeno (T-S) fuzzy models is investigated. The observer-based model predictive event-triggered fuzzy reset controller is constructed by a T-S fuzzy state observer, an event-triggered fuzzy reset controller, and a model predictive mechanism. First, the proposed controller utilizes the T-S fuzzy model and is constructed based on state observations and discrete sampling output, which can greatly reduce the occupation of communication resources. Then, the model predictive strategy for reset law design is designed in this paper. With a reasonable reset of the controller state at certain instants, the performance of the reset control systems is improved. Finally, the validity of the proposed method is illustrated by simulation. The merits of the proposed controller in improving transient performance and reducing the communication occupation are demonstrated by comparing its results with the output feedback fuzzy controller and the first-order fuzzy reset controller.  相似文献   

12.
In this paper, the global output feedback tracking control is investigated for a class of switched nonlinear systems with time-varying system fault and deferred prescribed performance. The shifting function is introduced to improve the traditional prescribed performance control technique, remove the constraint condition on the initial value, and make the constraint bounds have more alternative forms. To estimate the unmeasured state variables and compensate the system fault, the switched dynamic gain extended state observer is constructed, which relaxes the traditional Lipschitz conditions on the nonlinear functions. Based on the proposed observer, by constructing the new Lyapunov function and using the backstepping method, the global robust output feedback controller is designed to make the output track the reference signal successfully, and after the adjustment time, the tracking error enters into the prescribed set. The stability of the system is analyzed by the average dwell time method. Finally, simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

13.
This paper investigates the problem of observer-based decentralized control for a class of large-scale stochastic high-order feedforward systems with multi time delays. By using the homogeneous domination idea and constructing the implementable observer, the decentralized output-feedback controller design scheme is firstly proposed. Then, with the aid of stochastic time delay system stability theory, the globally asymptotically stable in probability of the closed-loop system is verified by selecting an appropriate Lyapunov–Krasoviskii functional. Finally, an example is provided to demonstrate the efficiency of the proposed design method.  相似文献   

14.
This paper investigates the output feedback control for a class of stochastic nonlinear time delay systems based on dynamic gain technique. The nonlinear terms of the stochastic system satisfy linear growth condition on unmeasured state variables with the output dependent incremental rate, which makes the studied time delay stochastic system more general than the exiting results. Firstly, the full order dynamic gain observer is constructed. Then, the linear-like controller is designed without using recursive design method. Next, the stability analysis is given and a useful corollary is obtained. Finally, a simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

15.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

16.
In this paper, the event-triggered decentralized control problem for interconnected nonlinear systems with input quantization is investigated. A state observer is constructed to estimate the unmeasurable states, and the state-dependent interconnections are accommodated by presenting some smooth functions. Then by employing backstepping technique and neural networks (NNs) approximation capability, a novel decentralized output feedback control strategy and an event-triggered mechanism are designed simultaneously. It is proved through Lyapunov theory that the closed-loop system is stable and the tracking property of all subsystems is guaranteed. Finally, the effectiveness of the proposed scheme is illustrated by an example.  相似文献   

17.
In this paper, the finite-time stability and asynchronous resilient control for a class of Itô stochastic semi-Markov jump systems are studied. Firstly, the sufficient conditions of the finite-time stability for stochastic semi-Markovian jump systems are given. Secondly, the state feedback and observer-based finite-time asynchronous resilient controllers are designed. By multiple Lyapunov functions approach, the sufficient conditions for the existence of these two types of controllers which make the system stochastically stabilizable in finite time are given. Compared with nonresilient case, the existence of the resilient controller can eliminate the influence of the uncertainties and get better results. Finally, a numerical example is given to verify the effectiveness of our results.  相似文献   

18.
In this paper, a novel error-driven nonlinear feedback technique is designed for partially constrained errors fuzzy adaptive observer-based dynamic surface control of a class of multiple-input-multiple-output nonlinear systems in the presence of uncertainties and interconnections. There is no requirements that the states are available for the controller design by constructing fuzzy adaptive observer, which can online identify the unmeasurable states using available output information only. By transforming partial tracking errors into new error variables, partially constrained tracking errors can be guaranteed to be confined in pre-specified performance regions. The feature of the error-driven nonlinear feedback technique is that the feedback gain self-adjusts with varying tracking errors, which prevents high-gain chattering with large errors and guarantees disturbance attenuation with small errors. Based on a new non-quadratic Lyapunov function, it is proved that the signals in the resulted closed-loop system are kept bounded. Simulation and comparative results are given to demonstrate the effectiveness of the proposed method.  相似文献   

19.
In this paper, a novel on-line observer-based trajectory tracking strategy for leader-follower formation of multiple nonholonomic mobile robots is developed. In the proposed strategy, a leader robot follows a certain trajectory whereas a number of followers track the leader as specified by a formation protocol. Unlike other techniques in the literature, a predefined trajectory is not required, and it can be changed on-line. Moreover, this strategy aims to have a fast transient response without showing undesired overshoots. To achieve this feature, a new observer is introduced. Based on the output of that observer, a control strategy with two components is derived. The first control component is responsible for tracking the desired trajectory, whereas the second control component is used to regulate the robot to its desired steady state position. The stability of the closed loop control system is investigated. Applications of the proposed observer-based controller to different case studies are presented to illustrate the effectiveness, robustness and applicability of the developed technique. To show the superiority of proposed controller, its performance in a trajectory tracking application is compared to that of a Lyapunov-based controller.  相似文献   

20.
In this paper a new integrated observer-based fault estimation and accommodation strategy for discrete-time piecewise linear (PWL) systems subject to actuator faults is proposed. A robust estimator is designed to simultaneously estimate the state of the system and the actuator fault. Then, the estimate of fault is used to compensate for the effect of the fault. By using the estimate of fault and the states, a fault tolerant controller using a PWL state feedback is designed. The observer-based fault-tolerant controller is obtained by the interconnection of the estimator and the state feedback controller. We show that separate design of the state feedback and the estimator results in the stability of the overall closed-loop system. In addition, the input-to-state stability (ISS) gain for the closed-loop system is obtained and a procedure for minimizing it is given. All of the design conditions are formulated in terms of linear matrix inequalities (LMI) which can be solved efficiently. Also, performance of the estimator and the state feedback controller are minimized by solving convex optimization problems. The efficiency of the method is demonstrated by means of a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号