首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
Understanding the mineralogy of the Earth''s interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800–2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2Hx (x ≤ 1) phase. The (Mg, Fe)O2Hx has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2Hx is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+ and H+). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.  相似文献   

2.
The supramolecular chemistry of nanoclusters is a flourishing area of nano-research; however, the controllable assembly of cluster nano-building blocks in different arrays remains challenging. In this work, we report the hierarchical structural complexity of atomically precise nanoclusters in micrometric linear chains (1D array), grid networks (2D array) and superstructures (3D array). In the crystal lattice, the Ag29(SSR)12(PPh3)4 nanoclusters can be viewed as unassembled cluster dots (Ag29–0D). In the presence of Cs+ cations, the Ag29(SSR)12 nano-building blocks are selectively assembled into distinct arrays with different oxygen-carrying solvent molecules―Cs@Ag29(SSR)12(DMF)x as 1D linear chains (Ag29–1D), Cs@Ag29(SSR)12(NMP)x as 2D grid networks (Ag29–2D), and Cs@Ag29(SSR)12(TMS)x as 3D superstructures (Ag29–3D). Such self-assemblies of these Ag29(SSR)12 units have not only been observed in their crystalline state, but also in their amorphous state. Due to the diverse surface structures and crystalline packing modes, these Ag29-based assemblies manifest distinguishable optical absorptions and emissions in both solutions and crystallized films. Furthermore, the surface areas of the nanocluster crystals are evaluated, the maximum value of which occurs when the cluster nano-building blocks are assembled into 2D arrays (i.e. Ag29–2D). Overall, this work presents an exciting example of the hierarchical assembly of atomically precise nanoclusters by simply controlling the adsorbed molecules on the cluster surface.  相似文献   

3.
As a non-invasive therapeutic method without penetration-depth limitation, magnetic hyperthermia therapy (MHT) under alternating magnetic field (AMF) is a clinically promising thermal therapy. However, the poor heating conversion efficiency and lack of stimulus–response obstruct the clinical application of magnetofluid-mediated MHT. Here, we develop a ferrimagnetic polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane) (mPEG-b-PHEP) copolymer micelle loaded with hydrophobic iron oxide nanocubes and emodin (denoted as EMM). Besides an enhanced magnetic resonance (MR) contrast ability (r2 = 271 mM−1 s−1) due to the high magnetization, the specific absorption rate (2518 W/g at 35 kA/m) and intrinsic loss power (6.5 nHm2/kg) of EMM are dozens of times higher than the clinically available iron oxide nanoagents (Feridex and Resovist), indicating the high heating conversion efficiency. Furthermore, this composite micelle with a flowable core exhibits a rapid response to magnetic hyperthermia, leading to an AMF-activated supersensitive drug release. With the high magnetic response, thermal sensitivity and magnetic targeting, this supersensitive ferrimagnetic nanocomposite realizes an above 70% tumor cell killing effect at an extremely low dosage (10 μg Fe/mL), and the tumors on mice are completely eliminated after the combined MHT–chemotherapy.  相似文献   

4.
Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6–310 mg gallic acid equivalent/g fresh weight (fw), and 46.6–733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44–58 %), hydrogen peroxide (15.3–18.6 %), and hydroxyl radicals (50–85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.  相似文献   

5.
Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  相似文献   

6.
7.
Designing new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering.  相似文献   

8.
Using Lu's continuation theorem, the extension one of Manásevich-Mawhin, we study the existence of periodic solutions for p-Laplacian neutral Liénard equation of the form
(?p(x(t)-cx(t-σ)))+f(x(t))x(t)+β(t)g(x(t-τ(t))=e(t).  相似文献   

9.
The present study was designed to understand the cigarette smoking-induced alterations in hormones and the resulting changes in platelet serotonin (5-hydroxytryptamine, 5-HT) and monoamine oxidase (MAO-B) activity in chronic smokers. Human male volunteers aged 35 ± 8 years, were divided into two groups, namely controls and smokers (12 ± 2 cigarettes per day for 7–10 years). Results showed that cigarette smoking significantly (p < 0.05) elevated plasma triiodothyronine (T3), cortisol and testosterone levels with significant (p < 0.05) reduction in plasma tryptophan and thyroxin (T4). Moreover, smokers showed reduced platelet 5-HT levels and MAO-B activity. In smokers, plasma cortisol was negatively correlated with tryptophan (r = −0.386), platelet MAO-B (r = −0.264), and 5-HT (r = −0.671), and positively correlated with testosterone (r = 0.428). However, testosterone was negatively correlated with platelet MAO-B (r = −0.315), and 5-HT (r = −.419) in smokers. Further, smokers plasma T3 levels were negatively correlated with platelet MAO-B (r = −0.398), and 5-HT (r = −0.541), whereas T4 levels were positively correlated with platelet MAO-B (r = 0.369), and 5-HT (r = 0.454). In conclusion, our study showed that altered testosterone and cortisol levels may aggravate behavior, mood disturbances and symptoms of depression by decreasing platelet 5-HT and MAO-B activity in smokers.  相似文献   

10.
Development of novel catalysts for nitrogen reduction at ambient pressures and temperatures with ultrahigh ammonia (NH3) yield and selectivity is challenging. In this work, an atomic catalyst with separated Pd atoms on graphdiyne (Pd-GDY) was synthesized, which shows fascinating electrocatalytic properties for nitrogen reduction. The catalyst has the highest average NH3 yield of 4.45 ± 0.30 mgNH3 mgPd−1 h−1, almost tens of orders larger than for previously reported catalysts, and 100% reaction selectivity in neutral media. Pd-GDY exhibits almost no decreases in NH3 yield and Faradaic efficiency. Density functional theory calculations show that the reaction pathway prefers to perform at the (Pd, C1, C2) active area because of the strongly coupled (Pd, C1, C2), which elevates the selectivity via enhanced electron transfer. By adjusting the p–d coupling accurately, reduction of self-activated nitrogen is promoted by anchoring atom selection, and side effects are minimized.  相似文献   

11.
12.
In this paper, we use the coincidence degree theory to establish new results on the existence of T-periodic solutions for the Rayleigh equation with two deviating arguments of the form
x+f(x(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=p(t).  相似文献   

13.
Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.  相似文献   

14.
Applying metal organic frameworks (MOFs) in electrochemical systems is a currently emerging field owing to the rich metal nodes and highly specific surface area of MOFs. However, the problems for MOFs that need to be solved urgently are poor electrical conductivity and low ion transport. Here we present a facile in situ growth method for the rational synthesis of MOFs@hollow mesoporous carbon spheres (HMCS) yolk–shell-structured hybrid material for the first time. The size of the encapsulated Zeolitic Imidazolate Framework-67 (ZIF-67) is well controlled to 100 nm due to the spatial confinement effect of HMCS, and the electrical conductivity of ZIF-67 is also increased significantly. The ZIF@HMCS-25% hybrid material obtained exhibits a highly efficient oxygen reduction reaction activity with 0.823 V (vs. reversible hydrogen electrode) half-wave potential and an even higher kinetic current density (JK = 13.8 mA cm−2) than commercial Pt/C. ZIF@HMCS-25% also displays excellent oxygen evolution reaction performance and the overpotential of ZIF@HMCS-25% at 10 mA cm−2 is 407 mV. In addition, ZIF@HMCS-25% is further employed as an air electrode for a rechargeable Zn–air battery, exhibiting a high power density (120.2 mW cm−2 at 171.4 mA cm−2) and long-term charge/discharge stability (80 h at 5 mA cm−2). This MOFs@HMCS yolk–shell design provides a versatile method for the application of MOFs as electrocatalysts directly.  相似文献   

15.
Determining the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the Earth''s metallic cores. The authors summarize relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.

The thermal conductivity of iron alloys is a key to understanding the mechanism of convection in the Earth''s liquid core and its thermal history. The Earth''s magnetic field is formed by a dynamo action that requires convection in the liquid core. Present-day outer core convection can be driven by the buoyancy of light-element-enriched liquid that is released upon inner core solidification in addition to thermal buoyancy associated with secular cooling. In contrast, before the birth of the inner core, the core heat loss must be more than the heat conducted down the isentropic gradient in order to drive convection by thermal buoyancy alone, which can be a tight constraint upon the core thermal evolution.Recent mineral physics studies throw the traditional value of the Earth''s core thermal conductivity into doubt (Fig. (Fig.1).1). Conventionally the thermal conductivity of the outer core had been considered to be ∼30 W m−1 K−1, an estimate based on shock experiments and simple physical models including the Wiedemann-Franz law: κel = LTρ−1, where κel, L, T and ρ are electronic thermal conductivity, Lorenz number, temperature and electrical resistivity, respectively [1]. Such relatively low core conductivity indicates that liquid core convection could have been driven thermally even with relatively slow cooling rate. However, in 2012–2013, our conventional view was challenged by both computational and experimental studies showing much higher core conductivity [2–4].Open in a separate windowFigure 1.(a) Electrical resistivity and (b) thermal conductivity values at the top of the Earth''s core in the literature [1,2,4–7,9,16]. Filled symbols were calculated on the basis of the Wiedemann-Franz law with ideal Lorenz number (L0 = 2.44 × 10−8 W Ω K−2). Gray bands indicate (a) the range of saturation resistivity [9] and (b) thermal conductivity computed from the saturation resistivity and the Wiedemann-Franz law.Since then, experimental determinations of the thermal conductivity of iron and alloys have been controversial (Fig. (Fig.1).1). Ohta et al. [5] measured the electrical resistivity of iron under core conditions in a laser-heated diamond-anvil cell (DAC). The results demonstrate relatively high thermal conductivity of ∼90 W m−1 K−1 for liquid Fe-Ni-Si alloy based on their measured resistivity for pure iron, Matthissen''s rule and Wiedemann-Franz law, which is compatible with ab initio simulations [2,4]. On the other hand, flash laser-heating and fast thermal radiation detection experiments demonstrated the low core conductivity of 20–35 W m−1 K−1 based on finite element method simulations [6,7], in accordance with the traditional estimate [1]. Since transport properties that describe non-equilibrium phenomena are difficult to measure, the fact that determinations of the iron conductivity under core conditions have become viable these days is a remarkable success in mineral physics. Nevertheless, the discrepancy in core conductivity makes a big difference in the expected age of the inner core, mechanism of liquid core convection and thermal history [3].Despite a number of subsequent studies based on a variety of different techniques, we still see a dichotomy of proposed core conductivity values (Fig. (Fig.1).1). The ‘saturation’ resistivity, which is derived from the fact that the mean free path of electron–phonon interaction cannot be longer than the interatomic distance, gives the lower bound for conductivity. Such saturation resistivity lies between two clusters of reported high and low resistivity values. While the resistivity saturation is important in highly resistive transition metals and their alloys [3,8] (Fig. (Fig.2),2), the conventional estimate [1] did not include the effect of saturation in their models, which resulted in much higher resistivity than the saturation value and hence low core conductivity. The core electrical resistivity measured by recent DAC experiments [3,5,9] shows resistivity saturation (Fig. (Fig.2),2), demonstrating the high core conductivity as far as the Wiedemann-Franz law holds with ideal Lorenz number (Fig. (Fig.1).1). Additionally, since temperature has a large effect on resistivity, temperature gradient in a laser-heated sample is an issue. An internally-resistance-heated DAC provides homogenous and stable sample heating and is thus a promising technique for conductivity measurements at high pressure and temperature (P–T) [9]. The validity of the Wiedemann-Franz law under extreme conditions has also been an issue. Simultaneous measurements of the electrical resistivity and the thermal conductivity of iron alloy under core high P–T conditions will provide decisive evidence for it.Open in a separate windowFigure 2.Temperature response of the electrical resistivity of (a) fcc iron estimated at 1 bar [8] (blue curve) and (b) hcp iron at 115 GPa [5]. Red curve and black line with gray uncertainty band indicate the predicted resistivity based on the Bloch-Grüneisen model with and without the resistivity saturation, respectively.As introduced above, the most recent high P–T measurements for Fe containing 2, 4, 6.5 wt.% Si using an internally-resistance-heated DAC have demonstrated that the thermal conductivity of Fe-12.7 wt.% (22.5 at.%) Si is ∼88 W m−1 K−1 at core-mantle boundary (CMB) conditions when the effects of resistivity saturation, melting and crystallographic anisotropy at measurements are taken into account [9] (Fig. (Fig.1).1). Thermal conductivity of Fe-10 at.% Ni-22.5 at.% Si alloy, a possible outer core composition, could be ∼79 W m−1 K−1 considering the impurity effect of Ni [10]. Si exhibits the largest ‘impurity resistivity’, indicating that the 79 W m−1 K−1 is the lower bound for the thermal conductivity of the Earth''s liquid core. The core thermal evolution models by Labrosse [11] demonstrated that if liquid core convection has been driven by thermal buoyancy with the core thermal conductivity of 79 W m−1 K−1 at the CMB and no radiogenic heating in the core, the CMB temperature is calculated to be ∼5500 K at 3.2 Ga and ∼4800 K at 2.0 Ga. Such high CMB temperature suggests that the whole mantle was fully molten until 2.0–3.2 Ga. It is not consistent with geological records, calling for a different mechanism of core convection.Chemical buoyancy may be an alternate means of driving convection in the core from the early history of the Earth. It has been proposed that the compositional buoyancy in the core could arise from the exsolution of MgO, SiO2 or both [12–14]. Recent core formation models based on the core-mantle distributions of siderophile elements suggest that core metals segregated from silicate at high temperatures, typically at 3000–4000 K and possibly higher [13,15], which enhances the incorporation of lithophile elements including Si and O, and possibly Mg into metals. It is suggested that the (Si, O)-rich liquid core may have become saturated with SiO2 upon secular cooling [14]. Indeed, the original core compositions proposed in recent core formation models include Si and O beyond the saturation limit at CMB conditions [15], i.e. 136 GPa and 4000 K, leading to SiO2 crystallization [13]. The rate of SiO2 crystallization required to sustain geodynamo is as low as 1 wt.% per 109 years, which corresponds to a cooling rate of 100–200 K Gyr−1 [14]. The most recent model of the core compositional evolution by Helffrich et al. [13] showed that MgO saturation follows SiO2 saturation only when >1.7 wt.% Mg in the core. If this is the case, in addition to solid SiO2, (Mg, Fe)-silicate melts exsolve from the core and transfer core-hosted elements such as Mo, W and Pt to the mantle. The core-derived silicate melts may have evolved toward FeO-rich compositions and now represent the ultra-low velocity zones above the CMB.  相似文献   

16.
In this paper, we use Leggett-Williams multiple fixed point theorem to obtain different sufficient conditions for the existence of at least three nonnegative periodic solutions of the first order functional differential equation of the form
y(t)=-a(t)y(t)+λf(t,y(h(t))).  相似文献   

17.
Hydrothermal fluid is essential for transporting metals in the crust and mantle. To explore the potential of Cu isotopes as a tracer of hydrothermal-fluid activity, Cu-isotope fractionation factors between Cl-bearing aqueous fluids and silicate magmas (andesite, dacite, rhyolite dacite, rhyolite and haplogranite) were experimentally calibrated. Fluids containing 1.75–14 wt.% Cl were mixed together with rock powders in Au95Cu5 alloy capsules, which were equilibrated in cold-seal pressure vessels for 5–13 days at 800–850°C and 2 kbar. The elemental and Cu-isotopic compositions of the recovered aqueous fluid and solid phases were analyzed by (LA-) ICP–MS and multi-collector inductively coupled plasma mass spectrometry, respectively. Our experimental results show that the fluid phases are consistently enriched in heavy Cu isotope (65Cu) relative to the coexisting silicates. The Cu-isotope fractionation factor (Δ65CuFLUID-MELT) ranges from 0.08 ± 0.01‰ to 0.69 ± 0.02‰. The experimental results show that the Cu-isotopic fractionation factors between aqueous fluids and silicates strongly depend on the Cu speciation in the fluids (e.g. CuCl(H2O), CuCl2 and CuCl32−) and silicate melts (CuO1/2), suggesting that the exsolved fluids may have higher δ65Cu than the residual magmas. Our results suggest the elevated δ65Cu values in Cu-enriched rocks could be produced by addition of aqueous fluids exsolved from magmas. Together with previous studies on Cu isotopes in the brine and vapor phases of porphyry deposits, our results are helpful for better understanding Cu-mineralization processes.  相似文献   

18.
Using data generated by progressive nucleation mechanism on the cumulative fraction of citations of individual papers published successively by a hypothetical author, an expression for the time dependence of the cumulative number Lsum(t) of citations of progressively published papers is proposed. It was found that, for all nonzero values of constant publication rate ΔN, the cumulative citations Lsum(t) of the cumulative N papers published by an author in his/her entire publication career spanning over T years may be represented in distinct regions: (1) in the region 0 < t < Θ0 (where Θ0 ≈ T/3), Lsum(t) slowly increases proportionally to the square of the citation time t, and (2) in the region t > Θ0, Lsum(t) approaches a constant Lsum(max) at T. In the former region, the time dependence of Lsum(t) of an author is associated with three parameters, viz. the citability parameter λ0, the publication rate ΔN and his/her publication career t. Based on the predicted dependence of Lsum(t) on t, a useful scientometric age-independent measure, defined as citation acceleration a = Lsum(t)/t2, is suggested to analyze and compare the scientific activities of different authors. Confrontation of the time dependence of cumulative number Lsum(t) of citations of papers with the theoretical equation reveals one or more citation periods during the publication careers of different authors.  相似文献   

19.
Cystic Fibrosis Trans membrane conductance regulator (CFTR) gene is an asthma susceptibility gene. In the present study we investigated the possible association of CFTR gene mutations in Indian asthmatic children as compared to controls. The study included 250 asthmatics and 250 age and sex matched controls. Case to control ratio for sample size was 1:1. Genotyping was performed for 24 CFTR gene mutations by ARMS-PCR and PCR–RFLP method. Among 24 CFTR gene mutations, heterozygous allele of R553X mutation was found in 4 (1.6 %) asthmatic cases and 2 (0.8 %) controls. Value of FVC and FEV1/FVC ratio were significantly lower in heterozygous individuals (p value <0.05). No significant difference was observed in the genotype and allele frequency of R553X mutation (OR = 1.339, 95 % CI = 0.755–2.374, p value = 0.685). Furthermore, all wild type homozygous alleles were observed in remaining 23 CFTR gene mutations. Our data concludes that R553X mutation was not significantly associated in Indian asthmatic children.  相似文献   

20.
By means of Mawhin's continuation theorem, we study a kind of fourth-order p-Laplacian neutral functional differential equation with a deviating argument in the form:
(φp(x(t)−cx(tδ)))=f(x(t))x(t)+g(t,x(tτ(t,|x|)))+e(t).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号