首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (TC) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their TC, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-TC 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that TC of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the TC enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, TC can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.  相似文献   

2.
In this paper, necessary and sufficient conditions are derived for the existence of temporally periodic “dissipative structure” solutions in cases of weak diffusion with the reaction rate terms dominant in a generic system of reaction-diffusion equations ?ci/?t = Di?2ci+Qi(c), where the enumerator index i runs 1 to n, ci = ci(x, t) denotes the concentration or density of the ith participating molecular or biological species, Di is the diffusivity constant for the ith species and Qi(c), an algebraic function of the n-tuple c = (c1,\3., cn), expresses the local rate of production of the ith species due to chemical reactions or biological interactions.  相似文献   

3.
Inspired by nature, improving photosensitization represents a vital direction for the development of artificial photosynthesis. The sensitization ability of photosensitizers (PSs) reflects in their electron-transfer ability, which highly depends on their excited-state lifetime and redox potential. Herein, for the first time, we put forward a facile strategy to improve sensitizing ability via finely tuning the excited state of Ru(II)-PSs (Ru-1–Ru-4) for efficient CO2 reduction. Remarkably, [Ru(Phen)2(3-pyrenylPhen)]2+ (Ru-3) exhibits the best sensitizing ability among Ru-1–Ru-4, over 17 times higher than that of typical Ru(Phen)32+. It can efficiently sensitize a dinuclear cobalt catalyst for CO2-to-CO conversion with a maximum turnover number of 66 480. Systematic investigations demonstrate that its long-lived excited state and suitable redox driving force greatly contributed to this superior sensitizing ability. This work provides a new insight into dramatically boosting photocatalytic CO2 reduction via improving photosensitization.  相似文献   

4.
Fixed point properties of the binomial function
are developed. It is shown that for any
1 < L < N, TLNhas a unique fixed point p? in (0, 1), and that for large N, the fixed point is L/N. This has application to signal detection schemes commonly used in communication systems. When detecting the presence or absence of a signal with an initial false alarm probability pFAand an initial detection probability pD, then TLN(pFA) < pFAand TLN(pD) > pDif, and only if, pFA < p? < pD. When this condition is satisfied, as N → ∞, TLN(pFA) → 0 and TLN(pD → 1.  相似文献   

5.
The purpose of this study is to modify the traditional PID controller in order to improve its performance (stability and tracking) by changing the length of integration interval. The performance of the traditional PID controller was improved by changing the length of integration interval to make the most of the returns of the PID and PIσD controllers. The asymptotic stability domain, in terms of the feedback gains, is derived for systems of second order using the modified controller which will be identified as PIIσβD. Comparing this controller with the traditional PID controller and PIσD controller proposed in [1], it proves that it is more accurate and more stable. For illustration and comparison, two examples have been simulated to evaluate the performance of the modified controller. All simulation results indicate that the modified controller is better than the traditional PID controller and the PIσD controller from the accuracy and stability point of view.  相似文献   

6.
A well-known discrete stability test is used to derive from the denominator D(z) of a given stable high-order transfer function G(z), the denominator of a low-order approximant of G(z). The proposed method, based on the truncation and inversion of a continued fraction formed with the coefficients of D(z), yields a reduced denominator d(z) of degree, say m, which is always stable. Furthermore, depending on the neglected parts of the continued fraction, d(z) approximates m1 and m2 = mm1 zeros of D(z), located very near the points z=1 and z=-1, respectively. In the special case m1=m, d(z) is identical to the polynomial obtained by applying to D(z) the indirect technique, which combines the bilinear transformation with the Routh or the Schwarz approximation method.  相似文献   

7.
Understanding the correlation between exposed surfaces and performances of controlled nanocatalysts can aid effective strategies to enhance electrocatalysis, but this is as yet unexplored for the nitrogen reduction reaction (NRR). Here, we first report controlled synthesis of well-defined Pt3Fe nanocrystals with tunable morphologies (nanocube, nanorod and nanowire) as ideal model electrocatalysts for investigating the NRR on different exposed facets. The detailed electrocatalytic studies reveal that the Pt3Fe nanocrystals exhibit shape-dependent NRR electrocatalysis. The optimized Pt3Fe nanowires bounded with high-index facets exhibit excellent selectivity (no N2H4 is detected), high activity with NH3 yield of 18.3 μg h−1 mg−1cat (0.52 μg h−1 cm−2ECSA; ECSA: electrochemical active surface area) and Faraday efficiency of 7.3% at −0.05 V versus reversible hydrogen electrode, outperforming the {200} facet-enclosed Pt3Fe nanocubes and {111} facet-enclosed Pt3Fe nanorods. They also show good stability with negligible activity change after five cycles. Density functional theory calculations reveal that, with high-indexed facet engineering, the Fe-3d band is an efficient d-d coupling correlation center for boosting the Pt 5d-electronic exchange and transfer activities towards the NRR.  相似文献   

8.
Synthetic lethality was proposed nearly a century ago by geneticists and recently applied to develop precision anti-cancer therapies. To exploit the synthetic lethality concept in the design of chemical anti-cancer agents, we developed a bio-orthogonally catalyzed lethality (BCL) strategy to generate targeting anti-tumor metallodrugs both in vitro and in vivo. Metallodrug Ru-rhein was generated from two non-toxic species Ru-N3 and rhein-alkyne via exclusive endogenous copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction without the need of an external copper catalyst. The non-toxic species Ru-arene complex Ru-N3 and rhein-alkyne were designed to perform this strategy, and the mitochondrial targeting product Ru-rhein was generated in high yield (>83%) and showed high anti-tumor efficacy in vitro. This BCL strategy achieved a remarkable tumor suppression effect on the tumor-bearing mice models. It is interesting that the combination of metal-arene complexes with rhein via CuAAC reaction could transform two non-toxic species into a targeting anti-cancer metallodrug both in vitro and in vivo, while the product Ru-rhein was non-toxic towards normal cells. This is the first example that exclusive endogenous copper was used to generate metal-based anti-cancer drugs for cancer treatment. The anti-cancer mechanism of Ru-rhein was studied and autophagy was induced by increased reactive oxygen species and mitochondrial damage. The generality of this BCL strategy was also studied and it could be extended to other metal complexes such as Os-arene and Ir-arene complexes. Compared with the traditional methods for cancer treatment, this work presented a new approach to generating targeting metallodrugs in vivo via the BCL strategy from non-toxic species in metal-based chemotherapy.  相似文献   

9.
In the rapidly expanding size and complexity of the electricity network, automatic generation control (AGC) is contemplated to be the most remarkable option for offering good quality electric power supply to the end users. An AGC system entails highly vigorous, competent and intelligent control technique to deliver a healthy power under stochastic nature of consumers’ power demand. Hence, in this paper, a hybrid fuzzy fractional order proportional integral-fractional order proportional derivative (FFOPI-FOPD) controller is proposed as a new expert control technique to tackle AGC profitably in isolated and interconnected multi-area power systems. A recently developed imperialist competitive algorithm (ICA) is utilized for the optimization of the output gains (KP/KP1/KI/KD) and other parameters such as order of integrator (λ) and differentiator (μ) of FFOPI-FOPD controller exercising integral of squared error criterion. The proposed technique is firstly implemented on 1-area thermal system, then to express its potential and extensibility, the work is extended to 2-area hydro-thermal and 3-area thermal power systems widespread in the literature. The eminence of the method is betokened by comparing the results with the various newly published control methodologies and FPI/FFOPI controller designed in the study via ICA in terms of minimum values of various error criteria and undershoots/overshoots/settling times of frequency and tie-line power deviations following a sudden load demand in an area. The sensitivity analysis substantiates that the suggested controller is robust and performs staunchly under the wide variations in the system parameters, random load pattern and in the company of physical constraints to produce more clean electricity.  相似文献   

10.
Zeolites, as efficient and stable catalysts, are widely used in the environmental catalysis field. Typically, Cu-SSZ-13 with small-pore structure shows excellent catalytic activity for selective catalytic reduction of NOx with ammonia (NH3-SCR) as well as high hydrothermal stability. This review summarizes major advances in Cu-SSZ-13 applied to the NH3-SCR reaction, including the state of copper species, standard and fast SCR reaction mechanism, hydrothermal deactivation mechanism, poisoning resistance and synthetic methodology. The review gives a valuable summary of new insights into the matching between SCR catalyst design principles and the characteristics of Cu2+-exchanged zeolitic catalysts, highlighting the significant opportunity presented by zeolite-based catalysts. Principles for designing zeolites with excellent NH3-SCR performance and hydrothermal stability are proposed. On the basis of these principles, more hydrothermally stable Cu-AEI and Cu-LTA zeolites are elaborated as well as other alternative zeolites applied to NH3-SCR. Finally, we call attention to the challenges facing Cu-based small-pore zeolites that still need to be addressed.  相似文献   

11.
The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.Separating specific cells from heterogeneous or homogeneous mixtures has been considered as a key step in a wide variety of applications ranging from biomedicine to energy harvesting. For example, the separation and sorting of rare circulating tumor cells (CTCs) from whole blood has gained significant importance in the potential diagnosis and treatment of metastatic cancers.1,2 Similarly, malaria detection relies on the collection of infected red blood cells (RBCs) from whole blood.3,4 In addition, the selective separation of lipid-rich microalgae from homogeneous mixtures of microalgae is a promising technique in biomass conversion.5To date, conventional cell separation can be done by labelling cells with biomolecules to induce differences in physical properties. For instance, in a fluorescence-activated cell sorter (FACS), cells to be separated are labelled with antibodies or aptamers with fluorescent molecules, and then sorted by applying an electrical potential.6,7 Similarly, magnetic-activated cell sorter (MACS) uses magnetic.8,9 Alternatively, label-free cell separation methods have exploited inherent differences in the physical properties (e.g., size and dielectric properties) of different kinds of cells. For example, acoustophoresis forces particles larger than a desired size to move into the center of a fluidic channel by using ultrasonic standing waves.10–12 Inertial microfluidics takes advantage of curved fluidic channels in order to amplify the size differences between particles.13,14 Mass-dependent separation of particles based on gravity and hydrodynamic flow was also reported.15 Particles with different dielectric properties can also be sorted by dielectrophoresis which induces the movement of polarizable particles.16–18The disadvantage of these methods, however, is that they require external forces and labels that may cause unexpected damage to biological cells.19–21 More importantly, most methods are limited in separating cells of the same kind or cells with similar sizes and dielectric properties.Here we designed a novel, label-free density difference amplification-based cell sorting (dDACS) that allows the separation of particles with the same size and charge by exploiting subtle differences in density without the use of external forces. Figure 1(a) illustrates the proposed microfluidic model and its underlying mechanism. The conceptual microfluidic system consists of an inlet, a separation chamber (hydraulic jump cavity), and multiple outlets. Particles entering through the inlet experience gravity (FG), buoyancy (FB), and drag (FD) forces in the separation chamber. The net force acting on the particles can be described as FFGFBFD.(1)As particles enter the separation chamber (i.e., hydraulic jump cavity), FD acting on the particles changes its direction along the streamline. The particles experience additional forces in the y direction due to large tangential angle (Fig. 1(b)). For lighter particles, whose densities are close to that of the surrounding water, FD becomes comparable to FG (i.e., in the y direction), while the net force for heavier particles is less affected by this additional contribution of FD due to a large FG. As a result, the height (H) and distance (D) that each particle can travel are different depending on its density. The difference in the maximum height (ΔHmax) between two particles with different density (ρp1 and ρp2) can be further approximated as ΔHmax(vyp0)2(vyfvyp0),(ρp1ρp2),(2)where vyp0 and vyf represent the velocity of particle and fluid along the y direction at the entrance of hydraulic jump cavity, respectively.Open in a separate windowFIG. 1.Schematic illustration of label-free density difference amplification-based cell sorting (dDACS), which exploits differences in the densities (ρ1 > ρ2) of particles with similar diameters (d) and charge. (a) The conceptual microfluidic design consists of an inlet, a separation chamber (hydraulic jump cavity), and multiple outlets. Incoming particles experience gravity (FG), buoyancy (FB), and drag (FD) forces in the separation chamber, and depending on their densities, the height (H) and distance (D) that each particle is able to reach will be different, allowing the particles to be separated into multiple outlets. (b) Possible microfluidic channel configurations for density-based separation: Uniform channel height (left), gradual channel expansion (middle), and hydraulic jump cavity with sudden channel expansion (right). The height difference between particles with different densities can be amplified by the sudden channel expansion compared to the other two cases due to the relatively large tangential angle, θ of FD. (|θ1|≪ |θ2|) (see Fig. S1 in the supplementary material22).In comparison with the other two cases (Fig. 1(b) uniform channel height and gradual channel expansion), the height difference between the particles with different densities can be amplified by the sudden channel expansion in the hydraulic jump cavity due to relatively large tangential angle (see supplementary material22). Therefore, the particles can be separated through the multiple outlets, depending on their height and distance.In order to analyze the separation behavior of particles in the chamber according to differences in their densities, H and D are systematically investigated. The numerical simulations are performed using a commercial CFD software (CFX 14.0; ANSYS 14.0; ANSYS, Inc.). Particles with the same density may have different trajectories in the separation chamber depending on their inlet positions (Fig. 2(a)). Prior to this investigation, the maximum height (Hmax) and distance (Dmax) for each particle are compared by examining H and D of 100 identical particles at different inlet positions since the inlet position of particles could be controlled.20 Fig. 2(b) shows Hmax and Dmax of particles with respect to density at a fixed Reynolds number (Re = 0.1). Note that Reynolds number is defined as Re = ρfvfDh/μ, where ρf, vf, Dh, μ are density of fluid, velocity of the fluid, hydraulic diameter of a channel, and dynamic viscosity of the fluid, respectively. The hydraulic diameter in the Reynolds number is determined with the inlet channel. Particle densities in the range of 1.1 to 2.0 g/cm3 are chosen with the increase of 0.1 g/cm3. These values are quite reasonable in that the densities of many microorganisms such as microalgae are typically within this range and their densities can be varied by 0.2 g/m3 depending on their cellular context.23 The lighter particles travel with a higher Hmax, and longer Dmax. With the separation chamber, the height difference between particles with densities of 1.1 and 1.2 g/cm3 can be amplified by about 10 times as compared to that in a channel without the chamber, judging from the position where the 1.1 g/cm3 particle reaches its Hmax.Open in a separate windowFIG. 2.Microfluidic particle separation with respect to Reynolds number (Re). (a) Trajectories in the separation chamber of a hundred particles with the same density starting from inlet positions chosen arbitrarily in order to investigate the effect of the inlet positions on the maxima of the height (Hmax) and distance (Dmax) prior to further simulation. (b) Representative trajectories of particles having different densities from 1.1 to 2.0 g/cm3. (c) The maximum height (Hmax) of each particle with respect to Re. (d) Representative maximum distance (Dmax) of each particle at Re = 0.1. (Left) Streamline of fluid and representative trajectories of particles with densities of 1.1 and 2.0 g/cm3 in the separation chamber at Re = 0.1 (right).In Fig. 2(c), the values for Hmax of particles with respect to Reynolds number (Re) are presented. Since in our study, the maximum height (Hmax) and distance (Dmax) for each particle were compared by examining H and D of 100 identical particles that are randomly distributed in the channel (throughout all figures), there is little variation in Hmax and Dmax between each simulation. However, the standard deviation between each simulation is quite small and can be negligible. The Hmax values particles at Re = 0.5 with densities of 1.1 g/cm3 and 1.2 g/cm3 are 2.21 × 103 μm and 2.17 × 103 μm, respectively. The difference between Hmax of different particles, ΔHmax, increases with decreasing Re. For example, ΔHmax between particles with densities of 1.1 and 2.0 g/cm3 becomes 0.26 × 103 μm at Re = 1.0, but increases to 1.38 × 103 μm as Re decreases to 0.1. As Re increases (velocity of fluid increases), the relative velocity in the y direction between the fluid and the particle increases resulting in increasing of FD in the y direction since the velocity of particle in the y direction is very small at the entrance of the separation chamber. Thus, contribution of FD becomes comparable to the net force in the y direction. As a result, most of the particles even in the case of heavier ones travel quite similarly with the streamline, and ΔHmax subsequently decreases. On the other hand, as Re decreases, the contribution of FG becomes dominant due to the decrease of FD in the y direction. Consequently, the particles start to cross downwards streamlines as the density of the particles increases and Hmax gradually decreases. In addition, irrespective of their densities, ΔHmax of the particles increases with decreasing Re.Fig. 2(d) shows Dmax with respect to the density of the particles (left). Different densities of particles show different trajectories due to the relative contribution of FD to the net force in the y direction depending on the particle density (right). At Re = 0.1, Dmax of particles with densities of 1.1 cm3 and 1.2 g/cm3 are 2.91 × 104 μm and 1.43 × 104 μm, respectively. As the density of a particle increases, its Dmax dramatically decreases. The difference in Dmax between particles with densities of 1.1 and 1.2 g/cm3 is 1.48 × 104 μm, and 0.0037 × 104 μm for particles with densities of 1.9 and 2.0 g/cm3. The effect of FD is stronger compared to that of FG on lighter particles. Thus, lighter particles travel quite similarly with the streamline and finally have a large Dmax. On the other hand, heavier particles where effect of FG is stronger compared to that of FD cross downwards streamlines and finally have a small Dmax.Next, in order to investigate the separation behavior of particles with respect to the geometry of the microfluidic device, the effect of the ratio of the height of the separation chamber (hc) to the inlet (hi) on Hmax is investigated as shown in Fig. Fig.3.3. Interestingly, Hmax of particles with density of 1.1 g/cm3 increases from 1.93 × 103 μm to 6.48 × 103 μm while that of particles with density of 1.9 g/cm3 slightly changes from 0.70 × 103 μm to 0.73 × 103 μm as hc/hi increases from 5 to 20.Open in a separate windowFIG. 3.Microfluidic particle separation with respect to the ratio of the height of the inlet (hi) to the separation chamber (hc).This result can be attributed to two effects: (1) the change in the streamline and (2) the relative contribution of drag force to the net force depending on the density. With increasing hc/hi, dramatic increase in Hmax for lighter particles is because the streamline for the lighter ones experiences more vertical displacement in the separation chamber and the contribution of FD to the net force acting on the lighter one is more significant (see Fig. S2 in the supplementary material22).Based on this approach, we propose a microfluidic device for the selective separation of the lightest particle. Fig. 4(a) shows one unit (with three outlets) of the proposed microfluidic device that can be connected in series. The ratio of channel heights (hc/hi) is set to 20, and the particle densities are in the range of 1.1 ∼ 1.5 g/m3. Fig. 4(b) shows the representative separation behavior of the particles. A portion of the lightest particles (1.1 g/cm3) is selectively separated into the upper and middle outlets, while remaining light particles together with four other heavier particles with densities in the range of 1.2 to 1.5 g/cm3 leave through the lowest outlet. With a single operation of this unit, 40% of the lightest particles are recovered. In addition, the yield increases with increasing number of cycles (Fig. 4(c)).Open in a separate windowFIG. 4.(a) One unit of the proposed microfluidic device for the selective separation of the lightest particle based on the simulation results. Particles are separated into two outlets based on differences in both the height and distance travelled stemming from differences in density. (b) Representative separation behavior of particles observed in the device. (c) The yield of the lightest particle (1.1 g/cm3) with the proposed microfluidic device according to the number of cycles (i.e., this unit is assumed to be connected in series).In summary, we have demonstrated a label-free microfluidic system for the separation of particles according to subtle differences in their densities without external forces. Our microfluidic design consists simply of an inlet, a separation chamber, and multiple outlets. When entering the separation chamber, the particles experience an additional drag force in the y direction, amplifying the difference in both the height and the distance that the particles with different densities can travel within the chamber. At a fixed Reynolds number, with increasing particle density, Hmax decreases monotonously, and Dmax decreases dramatically. On the other hand, as Reynolds number increases, the difference between the heights of particles with different densities is attenuated. In addition, the simulation reveals that increasing the ratio of the channel heights increases the difference between the heights of particles only when their densities are close to that of the surrounding water. Based on this approach, a microfluidic device for the separation of the lightest particles has been proposed. We expect that our density-based separation design can be beneficial to the selective separation of specific microorganisms such as lipid-rich microalgae for energy harvesting application.  相似文献   

12.
VCO sweep-rate limit for a phase-lock loop   总被引:1,自引:0,他引:1  
Phase-lock loops (PLLs) serve important roles in phase-lock receivers, coherent transponders, and similar applications. For many of these uses, the bandwidth of the loop must be kept small to limit the detrimental influence of noise, and this requirement makes the natural PLL pull-in phenomenon too slow and/or unreliable. For each such case, the phase-lock acquisition process can be aided by the application of an external sweep voltage to the loop voltage controlled oscillators (VCOs). The goal is to have the applied sweep voltage rapidly decrease the closed-loop frequency error to a point where phase lock occurs quickly. For a second-order loop containing a perfect integrator loop filter, there is a maximum VCO sweep-rate magnitude, denoted here as Rm rad/s2, for which phase lock is guaranteed. If the applied VCO sweep rate is less than Rm, the loop cannot sweep past a stable phase-lock point, and it will phase lock. On the other hand, for an applied sweep-rate magnitude that is greater than Rm, the PLL may sweep past a lock point and fail to phase lock. In the existing PLL literature, only a trial-and-error approach has been described for estimating Rm, given values of loop damping factor ζ and natural frequency ωn. Furthermore, no plots exist of computed versus ζ and versus ζ (BL denotes loop-noise bandwidth). These deficiencies are dealt with in this paper. A new iterative numerical technique is given that converges to the maximum sweep-rate magnitude Rm. It is used to generate data for plots of and versus ζ, the likes of which have never appeared before in the PLL literature.  相似文献   

13.
With the rapidly increasing penetration level of power generated by large scale photovoltaic (PV) units into the power systems, the effect of the variable output power of the PV unit on the stability of the system cannot be ignored. This paper presents a mathematical approach to study the effect of high infiltration of PV power plant on the small signal stability of a power network and design of optimal fractional order PID (PIλDμ) controller for improving the probabilistic small signal stability of the power systems, taking into consideration the uncertainty of system operating conditions. Due to the probabilistic characteristics of large scale PV power generation, deterministic analysis approaches are not able to fully reveal the impact of high-level PV penetration. At first, this work introduces the main module and mathematical modeling of the large scale PV generation jointly with the single-machine infinite-bus power system. In the following, the paper proposes an efficient method that tunes power system stabilizer (PSS) to have the robustness for damping electro-mechanical oscillations in power systems with incorporated random PV power. For this reason, a robust PSS based on hybridization of PIλDμ controller and Non-dominated Sorting Genetic Algorithm (NSGAII) is designed. This paper targets at finding the optimal gain scheduling of the PIλDμ through the use of the advanced heuristic optimization technique with two objective functions in PV-grid connected systems. The performance of the proposed NSGAII-based PIλDμ controller (NSGAII- PIλDμ) under different solar irradiation, temperature conditions and disturbances is tested. Simulation results illustrate that the model presented can be used in designing of essential controllers for large scale PV power plant.  相似文献   

14.
A technique for visualizing and quantifying reactive mixing for laminar and turbulent flow in a microscale chemical reactor using confocal-based microscopic laser induced fluorescence (confocal μ-LIF) was demonstrated in a microscale multi-inlet vortex nanoprecipitation reactor. Unlike passive scalar μ-LIF, the reactive μ-LIF technique is able to visualize and quantify micromixing effects. The confocal imaging results indicated that the flow in the reactor was laminar and steady for inlet Reynolds numbers of 10, 53, and 93. Mixing and reaction were incomplete at each of these Reynolds numbers. The results also suggested that although mixing by diffusion was enhanced near the midplane of the reactor at Rej = 53 and 93 due to very thin bands of acidic and basic fluid forming as the fluid spiraled towards the center of the reactor, near the top, and bottom walls of the reactor, the lower velocities due to fluid friction with the walls hindered the formation of these thin bands, and, thus, resulted in large regions of unmixed and unreacted fluid. At Rej = 240, the flow was turbulent and unsteady. The mixing and reaction processes were still found to be incomplete even at this highest Reynolds number. At the reactor midplane, the flow images at Rej = 240 showed unmixed base fluid near the center of the reactor, suggesting that just as in the Rej = 53 and 93 cases, lower velocities near the top and bottom walls of the reactor hinder the mixing and rection of the acidic and basic streams. Ensemble averages of line-scan profiles for the Rej = 240 were then calculated to provide statistical quantification of the microscale mixing in the reactor. These results further demonstrate that even at this highest Reynolds number investigated, mixing and reaction are incomplete. Visualization and quantification of micromixing using this reactive μ-LIF technique can prove useful in the validation of computational fluid dynamics models of micromixing within microscale chemical reactors.  相似文献   

15.
16.
The roles of calcitonin, parathormone and calcitriol in the regulation of plasma calcium and phosphate are well-established. However, in autosomal-dominant hypophosphatemic rickety patients, studies have revealed normal plasma levels of calcium, associated with normal thyroid and parathyroid functions, but decreased levels of phosphate and calcitriol despite adequate reserves of vitamin D. Also, in tumoral calcinosis, persistent hyperphosphatemia with increased levels of 1,25(OH)2D3 have been observed. These studies indicate the involvement of factors other than the ones already known. The first decade of this century/millennium has led to the discovery of the involvement of fibroblast growth factor-23, furin protease and α-klotho in the homeostasis of calcium and phosphate, which is the subject of this mini-review.  相似文献   

17.
A novel H filter design methodology has been presented for a general class of nonlinear systems. Different from existing nonlinear filtering design, the nonlinearities are approximated using neural networks, and then are modeled based on linear difference inclusions, which makes the structure of the desired filter simpler and parameter turning easier and has the advantages of guaranteed stability, numeral robustness, bounded estimation accuracy. A unified framework is established to solve the addressed H filtering problem by exploiting linear matrix inequality (LMI) approach. A numerical example shows that the filtering error systems will work well against bounded error between a nonlinear dynamical system and a multilayer neural network.  相似文献   

18.
Let f(χ) together with its first two derivatives be continuous in the domain D and additionally let χM?D be an extremum (or turning point) of this function. Also, let χn+1 = T (χnn-1n-2) be Jarratt's Method for computing the extremum (or turning point) of a function. Criteria are demonstrated which insure that, for any triple of initial assumptions (χ10-1)?D, Jarratt's Method, converges to the extremum of f(χ), and that from and after some n = N0, the rate of convergence of this method increases steadily, finally becoming unbounded when the solution χM is attained.  相似文献   

19.
In this paper, an analytic solution of nonlinear H robust controller is first proposed and used in a complete six degree-of-freedom nonlinear equations of motion of flight vehicle system with mass and moment inertia uncertainties. A special Lyapunov function with mass and moment inertia uncertainties is considered to solve the associated Hamilton-Jacobi partial differential inequality (HJPDI). The HJPDI is solved analytically, resulting in a nonlinear H robust controller with simple proportional feedback structure. Next, the control surface inverse algorithm (CSIA) is introduced to determine the angles of control surface deflection from the nonlinear H control command. The ranges of prefilter and loss ratio that guarantee stability and robustness of nonlinear H flight control system implemented by CSIA are derived. Real aerodynamic data, engine data and actuator system of F-16 aircraft are carried out in numerical simulations to verify the proposed scheme. The results show that the responses still keep good convergence for large initial perturbation and the robust stability with mass and moment inertia uncertainties in the permissible ranges of the prefilter and loss ratio for which this design guarantees stability give same conclusion.  相似文献   

20.
A linear matrix inequality based mixed H2-dissipative type state observer design approach is presented for smooth discrete time nonlinear systems with finite energy disturbances. This observer is designed to maintain H2 type estimation error performance together with either H or a passivity type disturbance reduction performance in case of randomly varying perturbations in its gain. A linear matrix inequality is used at each time instant to find the time-varying gain of the observer. Simulation studies are included to explore the performance in comparison to the extended Kalman filter and a previously proposed constant gain observer counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号