首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyzed the sampled-data controller for using time-delay nonlinear systems with a bounded uncertainty approach. Based on the Lyapunov stability theory, some synchronization criteria are first obtained. Here, the time-delay is assumed to be constant and known. Instead of solving a nonlinear optimization problem, it will be developed by solving a set of linear matrix inequalities (LMIs). The controller gains can be obtained by solving a set of LMIs. During the development of the Darcy-Brinkman model, numerical examples are used to demonstrate the accuracy and dependability of the presented approaches. Finally, numerical simulations show that the proposed solutions are effective and feasible.  相似文献   

2.
The paper investigates the design of hybrid state observer-based event-triggered controller for switched linear systems subject to quantized input and unknown but bounded additional disturbance and measurement noise. Firstly, by introducing a hybrid state observer and constructing a mode-dependent event-triggered mechanism, we design event-triggered controller for the considered switched linear systems. Then, by modeling the closed-loop system as an augmented asynchronous switched time-delay system, we deal with the asynchronous control problem caused by the switching between two consecutive trigger instants for the switched linear system. Thirdly, based on merging signal technique and multiple Lyapunov functional method, we obtain the sufficient criteria to guarantee the stability of the switched system when the switching signal meets an average dwell time condition, and further establish the hybrid observer-based event-triggered controller gains. Finally, a simulation example illustrates the validity of the results.  相似文献   

3.
This paper presents a moving horizon estimation approach for the multirate sampled-data system with unknown time-delay sequence. To estimate the unknown variables of interest, two main challenging issues need to be addressed: (a) synthesizing the multirate input and output data for state estimation, (b) simultaneously estimating the continuous state and discrete time-delay sequence. In this work a moving horizon estimation based approach is developed to tackle these issues. The proposed approach can simultaneously estimate both the continuous states and discrete time-delay sequence for dynamic systems. The effects of different noise level on the estimation of continuous states and discrete time-delay sequence are analyzed. The effectiveness of this method is illustrated through a simulation study.  相似文献   

4.
In this work, the finite-time extended dissipativity of the interval type-2 (IT2) fuzzy systems with probabilistic time-varying delay is discussed via resilient memory sampled-data control. To enable the stability analysis and control combination, an IT2 fuzzy model is employed to represent the dynamics of nonlinear systems of which the parameter uncertainties are taken by IT2 membership functions distinguish by the lower and upper membership functions. The main objective of this paper is to design a resilient memory sampled-data controller such that the resulting closed-loop system is finite-time bounded and satisfies extended dissipative performance. Moreover, the solvability of the derived conditions not only depends on the size of the delay but also on the probabilistic distribution of the delay taking values in some interval, thus probabilistic delay protocol is encountered in the IT2 fuzzy model. By employing suitable Lyapunov-Krasovskii functional (LKF) along with Wirtinger-based inequality, a set of sufficient conditions ensuring the finite-time extended dissipative performance for IT2 fuzzy systems are derived in terms of linear matrix inequalities (LMIs). Finally, two numerical simulations are presented to reveal the effectiveness of the developed technique.  相似文献   

5.
Robust fault detection for a class of nonlinear time-delay systems   总被引:1,自引:0,他引:1  
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. Firstly, a reference residual model is introduced to formulate the robust fault detection filter design problem as an H model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H optimization control technique, the existence conditions of the robust fault detection filter for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.  相似文献   

6.
The optimal control strategy constructed in the form of a state feedback is effective for small state perturbations caused by changes in modeling uncertainty. In this paper, we investigate a robust suboptimal feedback control (RSPFC) problem governed by a nonlinear time-delayed switched system with uncertain time delay arising in a 1,3-propanediol (1,3-PD) microbial fed-batch process. The feedback control strategy is designed based on the radial basis function to balance the two (possibly competing) objectives: (i) the system performance (concentration of 1,3-PD at the terminal time of the fermentation) is to be optimal; and (ii) the system sensitivity (the system performance with respect to the uncertainty of the time-delay) is to be minimized. The RSPFC problem is subject to the continuous state inequality constraints. An exact penalty method and a novel time scaling transformation approach are used to transform the RSPFC problem into the one subject only to box constraints. The resulting problem is solved by a hybrid optimization algorithm based on a filled function method and a gradient-based algorithm. Numerical results are given to verify the effectiveness of the developed hybrid optimization algorithm.  相似文献   

7.
This study focuses on a sampled-data fuzzy decentralized tracking control problem for a quadrotor unmanned aerial vehicle (UAV) under the variable sampling rate condition. To this end, the overall dynamics of the quadrotor is expressed as a decentralized Takagi–Sugeno (T–S) fuzzy model interconnected with each other. Although the proposed decentralized control technique divides the overall UAV control system into attitude and position subsystems, the stability of the entire control system is guaranteed. Besides, in this paper, the model uncertainty, interconnection, and reference trajectory are considered as disturbances acting on the tracking error. To attenuate these disturbances, a novel sampled-data tracking control design technique is derived based on a linear reference model to be tracked and the time-dependent Lyapunov–Krasovskii functional (LKF). By doing so, both the stability of the tracking error dynamics and the minimization of tracking performance are guaranteed. Also, the proposed tracking control design method is derived as a linear matrix inequality (LMI)-based optimal problem. Finally, a simulation example is provided to demonstrate the effectiveness and feasibility of the proposed design methodology.  相似文献   

8.
This paper deals with the problem of non-fragile guaranteed cost control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are assumed to be time-varying and norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square for all admissible parameter uncertainties and the closed-loop cost function value is not more than a specified upper bound. A new sufficient condition for the existence of such controllers is presented based on the linear matrix inequality (LMI) approach. Then, a convex optimization problem is formulated to select the optimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

9.
Derived from a simplified intelligent traffic control system, sampled-data controllability and stabilizability of Boolean control networks are considered. Compared with the existing case of uniform (periodic) sampling in Boolean control networks, the nonuniform one is more general. Using linear span with integral coefficients, the distribution of sampling points can be obtained. Then by constructing novel systems, some necessary and sufficient conditions are proposed to determine sampled-data controllability and stabilizability. Finally, two illustrative examples, which are on apoptosis networks and traffic control systems, respectively, are worked out to show the effectiveness of the obtained results.  相似文献   

10.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

11.
An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control (ILC) is proposed in this paper. The developed analog ILC method and the high-gain property tracker design methodology are first combined to significantly reduce learning epochs and overcome the initial condition shift problem and discontinuous reference input in the traditional ILC. Besides, the proposed ILC improves the transient response and decreases the rate of weighting matrices QQ to RR under the traditional linear quadratic tracker design. First, the off-line observer/Kalman filter identification (OKID) is used to determine the appropriate (low-) order system parameters and state estimator for the physical system with unknown system equation, so that the model-based PD-type ILC can be implemented for practical applications. Then, to improve the transient response and decrease the control effort, the proportional difference type (PD-type) ILC algorithm is combined with the high-gain property linear quadratic tracker (LQT) design to construct the high performance tracker for the model-based sampled-data systems. Furthermore, the discrete-time version high performance tracker design for the unknown stochastic sampled-data system via the iterative learning control method is proposed in this paper based on the Euler method and the digital redesign approach. Finally, some examples are given for illustrating the effectiveness of the proposed method.  相似文献   

12.
This paper addresses the design of a sampled-data model predictive control (MPC) strategy for linear parameter-varying (LPV) systems. A continuous-time prediction model, which takes into account that the samples are not necessarily periodic and that plant parameters vary continuously with time, is considered. Moreover, it is explicitly assumed that the value of the parameters used to compute the optimal control sequence is measured only at the sampling instants. The MPC approach proposed by Kothare et al. [1], where the basic idea consists in solving an infinite horizon guaranteed cost control problem at each sampling time using linear matrix inequalities (LMI) based formulations, is adopted. In this context, conditions for computing a sampled-data stabilizing LPV control law that provides a guaranteed cost for a quadratic performance criterion under input saturation are derived. These conditions are obtained from a parameter-dependent looped-functional and a parameter-dependent generalized sector condition. A strategy that consists in solving convex optimization problems in a receding horizon policy is therefore proposed. It is shown that the proposed strategy guarantees the feasibility of the optimization problem at each step and leads to the asymptotic stability of the origin. The conservatism reduction provided by the proposed results, with respect to similar ones in the literature, is illustrated through numerical examples.  相似文献   

13.
This paper presents the optimal regulator for a linear system with state delay and a quadratic criterion. The optimal regulator equations are obtained using the maximum principle. Performance of the obtained optimal regulator is verified in the illustrative example against the best linear regulator available for linear systems without delays. Simulation graphs demonstrating better performance of the obtained optimal regulator are included. The paper then presents a robustification algorithm for the obtained optimal regulator based on integral sliding mode compensation of disturbances. The general principles of the integral sliding mode compensator design are modified to yield the basic control algorithm oriented to time-delay systems, which is then applied to robustify the optimal regulator. As a result, the sliding mode compensating control leading to suppression of the disturbances from the initial time moment is designed. The obtained robust control algorithm is verified by simulations in the illustrative example.  相似文献   

14.
This paper is concerned with the design of dissipative state observers for a family of time-delay nonlinear systems. The Dissipativity method, proposed by one of the authors for delay-free nonlinear systems, is extended here to a class of time-delay nonlinear systems. The design method consists in decomposing the time-delay estimation error dynamics into a time-delay linear subsystem and a time-varying memoryless nonlinearity, connected in a negative feedback loop. By using some storage functionals, both delay-independent and delay-dependent dissipativity criteria are derived in order to guarantee the exponential convergence property of the observer. The exponential stability of the estimation error is then ensured, assuming that the nonlinearity is dissipative with respect to a quadratic supply rate and the linear part is designed, through the observer gains, to be dissipative with respect to a complementary supply rate. The design conditions are formulated in terms of tractable bilinear (BMI’s) or linear matrix inequalities (LMI’s). An interesting advantage is that the proposed dissipative design extends and generalizes under a unified framework several methods available in the literature, since a wide diversity of nonlinearities can be considered. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

15.
This paper addresses the issue of reliable feedback control of an uncertain aircraft flight control systems with disturbances via non-fragile sampled-data control approach. In particular, the parameter uncertainties are assumed to be randomly occurring which is described by the Bernoulli distributed sequences. By constructing a suitable Lyapunov–Krasovskii functional together with Wirtinger-based inequality, a new set of sufficient conditions in terms of linear matrix inequalities is obtained to ensure the asymptotic stability and extended dissipativity of the aircraft flight control systems not only when all actuators are operational, but also in case of some actuator failures. Finally, simulation results are conducted to validate the effectiveness of the proposed control design technique.  相似文献   

16.
This paper studies the extended dissipativity (ED) issue for T-S fuzzy systems (TSFSs) via reliable memory control scheme and aperiodic sampled-data (ASD) method. First, considering the random variation of sampling interval and the time delays (TDs) of sampling signal transmission in the communication network, a reliable aperiodic memory sampled-data control (RAMSDC) strategy is proposed. Then, the developed delay-dependent Lyapunov-Krasovskii functional (LKF) with some two-sided looped-functional (TSLF) terms is constructed to fully utilize sampled state information. The introduced free matrices in the TSLF need not to be positive definite, which reduces the conservativeness of the obtained results. Next, a sufficient condition is given to ensure the ED, and the controller gain matrix is obtained by means of linear matrix inequality (LMI) technique. At last, the effectiveness of theoretical results in practical application is verified by the use of a truck-trailer model.  相似文献   

17.
This paper is concerned with a leader-follower consensus problem for networked Lipschitz nonlinear multi-agent systems. An event-triggered consensus controller is developed with the consideration of discontinuous state feedback. To further enhance the robustness of the proposed controller, modeling uncertainty and switching topology are also considered in the stability analysis. Meanwhile, a time-delay equivalent approach is adopted to deal with the discrete-time control problem. Particularly, a sufficient condition for the stochastic stabilization of the networked multi-agent systems is proposed based on the Lyapunov functional method. Furthermore, an optimization algorithm is developed to derive the parameters of the controller. Finally, numerical simulation is conducted to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

18.
This paper studies the input-to-state stabilization problem of nonlinear time-delay systems. A novel event-triggered hybrid controller is proposed, where feedback controller and distributed-delayed impulsive controller are taken into account. By using the Lyapunov-Krasovskii method, sufficient conditions for input-to-state stability are constructed under the designed event-triggered hybrid controller, the relation among control parameters, threshold parameter of the event-triggered mechanism and time delay in the impulsive signals is derived. Compared with the existing results, the obtained input-to-state stability criteria are applicable to time-delay systems with stabilizing delay-dependent impulsive effects and destabilizing ones. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

19.
In this work, a sampled-data control problem for neural-network-based systems with an optimal guaranteed cost is investigated. By constructing suitable time-dependent functionals and utilizing an improved free-matrix-based integral inequality, a sampled-data stability criterion for neural-network-based systems is derived. Based on a first result, a sampled-data controller design method for neural-network-based systems that meets the maximum sampling period and minimum guaranteed cost performance is proposed. The superiority and validity of the results will be verified by comparing with the existing results in a numerical example.  相似文献   

20.
In this paper, the exponential stabilization problem of uncertain T–S fuzzy systems with time-varying delay is emulated by fuzzy sampled-data H control. Firstly, a novel suitable Lyapunov–Krasovskii function is constructed, which contains all the information about the sampling pattern. Secondly, a less conservative result is achieved by using an extended Jensen inequality, and purposefully using a compact free weighting matrix. In addition, according to the linear matrix inequality (LMI), some sampled-data H exponential stability sufficient conditions and controller design of T–S fuzzy systems are established. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号