首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
For a continuous-time linear system with constant reference input, the network-based proportional-integral (PI) control is developed to solve the output tracking control problem by taking time-varying sampling and network-induced delays into account. A traditional PI control system is introduced to obtain the equilibriums of state and control input. Using the equilibriums, a discrete-time PI tracking controller in a network environment is constructed. The resulting network-based PI control system is described by an augmented system with two input delays and the output tracking objective is transformed into ensuring asymptotic stability of the augmented system. A delay-dependent stability condition is established by a discontinuous augmented Lyapunov–Krasovskii functional approach. The PI controller design result of in-wheel motor as a case study is provided in terms of linear matrix inequalities. Matlab simulation and experimental results resorting to a test-bed for ZigBee-based control of in-wheel motor are given to validate the proposed method.  相似文献   

2.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

3.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

4.
In this paper, the finite horizon tracking control problem of probabilistic Boolean control networks (PBCNs) is studied. For a given reference output trajectory, two trackability definitions are introduced according to whether the tracking probability is 1. Under the framework of the semi-tensor product, some necessary and sufficient conditions are obtained to determine whether the reference output trajectory is trackable with probability (probability one) by a PBCN starting from a given initial state. Based on this, two algorithms are proposed to determine the maximum tracking probability and the corresponding optimal control policy sequence. By determining the tracking error of the reference output trajectory, two related optimal control problems are considered: one is to minimize the expected value of the total tracking error, and the other is to minimize the maximum tracking error. Inspired by dynamic programming, corresponding algorithms are given to solve these two problems. Finally, two examples are given to verify the validity and correctness of the results.  相似文献   

5.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

6.
This paper investigates the optimal tracking control problem (OTCP) for nonlinear stochastic systems with input constraints under the dynamic event-triggered mechanism (DETM). Firstly, the OTCP is converted into the stabilizing optimization control problem by constructing a novel stochastic augmented system. The discounted performance index with nonquadratic utility function is formulated such that the input constraint can be encoded into the optimization problem. Then the adaptive dynamic programming (ADP) method of the critic-only architecture is employed to approximate the solutions of the OTCP. Unlike the conventional ADP methods based on time-driven mechanism or static event-triggered mechanism (SETM), the proposed adaptive control scheme integrates the DETM to further lighten the computing and communication loads. Furthermore, the uniform ultimately boundedness (UUB) of the critic weights and the tracking error are analysed with the Lyapunov theory. Finally, the simulation results are provided to validate the effectiveness of the proposed approach.  相似文献   

7.
The novel control algorithm for linear time invariant plants with input time-delays and presence of external disturbances is proposed. The algorithm based on the state and disturbance predictors ensures the tracking control with unknown reference model parameters. The accuracy in steady state depends on the highest derivative of disturbance and reference model signals, therefore, the magnitude of these signals can be sufficiently large. Further, the proposed algorithm are extended on the state and disturbance sub-predictors which implement multi-step prediction. Compared with the predictor based algorithm the sub-predictor based algorithm allows to control plants with a larger input time-delay and allows to predict the disturbance in less time. The sufficient conditions in terms of linear matrix inequalities (LMIs) provide the estimate of the maximum time-delay that preserves the closed-loop system stability. Numerical examples illustrate the efficiency of the designed method compared with some existing ones.  相似文献   

8.
This paper proposes a data-driven terminal sliding mode decoupling controller with prescribed performance for a class of discrete-time multi-input multi-output systems in the presence of external disturbances and uncertainties. First, utilizing a discrete-time extended state observer and a compact form dynamic linearization data model, we derive a new data-driven mothod and establish the relationship between the input and output signals of controlled plant. Moreover, the disturbances, uncertainties, and couplings are suppressed owing to the application of the terminal sliding mode technique. Combined with the principle of prescribed performance control, the terminal sliding mode law with prescribed performance is derived. With the proposed data-driven method, the tracking error is lower, and the decoupling ability is improved. Furthermore, the stability of the control system is proven. Finally, a simulation is conducted on a three-tank system to demonstrate the effectiveness of the proposed scheme.  相似文献   

9.
An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control (ILC) is proposed in this paper. The developed analog ILC method and the high-gain property tracker design methodology are first combined to significantly reduce learning epochs and overcome the initial condition shift problem and discontinuous reference input in the traditional ILC. Besides, the proposed ILC improves the transient response and decreases the rate of weighting matrices QQ to RR under the traditional linear quadratic tracker design. First, the off-line observer/Kalman filter identification (OKID) is used to determine the appropriate (low-) order system parameters and state estimator for the physical system with unknown system equation, so that the model-based PD-type ILC can be implemented for practical applications. Then, to improve the transient response and decrease the control effort, the proportional difference type (PD-type) ILC algorithm is combined with the high-gain property linear quadratic tracker (LQT) design to construct the high performance tracker for the model-based sampled-data systems. Furthermore, the discrete-time version high performance tracker design for the unknown stochastic sampled-data system via the iterative learning control method is proposed in this paper based on the Euler method and the digital redesign approach. Finally, some examples are given for illustrating the effectiveness of the proposed method.  相似文献   

10.
This paper investigates the robust output regulation problem for stochastic systems with additive noises. As is known, for the output regulation control problem, a general method is to regard that the system is disturbed by an autonomous exosystem (which is consisted by external disturbances and reference signals), and for the system disturbed by the white noise, the stochastic differential equations (SDEs) should be utilized in modeling, accordingly, a controller with a feedforward regulator is constructed for the stochastic system with an exosystem, which can not only cancel the external disturbance, but also transform the trajectory tracking problem into the stabilization problem; In consideration of the state variables in stochastic systems cannot be measured completely, we embed an observer to the controller, such that the random interference can be suppressed, and the trajectory tracking can be achieved. Based on the stochastic control theory, the criteria of the exponential practical stability in the mean square is presented for the closed-loop system, finally, through tuning the controller parameters, the mean square of the tracking error can converge to an arbitrarily small neighborhood of the origin.  相似文献   

11.
In classical model reference adaptive control (MRAC), the adaptive rates must be tuned to meet multiple competing objectives. Large adaptive rates guarantee rapid convergence of the trajectory tracking error to zero. However, large adaptive rates may also induce saturation of the actuators and excessive overshoots of the closed-loop system’s trajectory tracking error. Conversely, low adaptive rates may produce unsatisfactory trajectory tracking performances. To overcome these limitations, in the classical MRAC framework, the adaptive rates must be tuned through an iterative process. Alternative approaches require to modify the plant’s reference model or the reference command input. This paper presents the first MRAC laws for nonlinear dynamical systems affected by matched and parametric uncertainties that constrain both the closed-loop system’s trajectory tracking error and the control input at all times within user-defined bounds, and enforce a user-defined rate of convergence on the trajectory tracking error. By applying the proposed MRAC laws, the adaptive rates can be set arbitrarily large and both the plant’s reference model and the reference command input can be chosen arbitrarily. The user-defined rate of convergence of the closed-loop plant’s trajectory is enforced by introducing a user-defined auxiliary reference model, which converges to the trajectory tracking error obtained by applying the classical MRAC laws before its transient dynamics has decayed, and steering the trajectory tracking error to the auxiliary reference model at a rate of convergence that is higher than the rate of convergence of the plant’s reference model. The ability of the proposed MRAC laws to prescribe the performance of the closed-loop system’s trajectory tracking error and control input is guaranteed by barrier Lyapunov functions. Numerical simulations illustrate both the applicability of our theoretical results and their effectiveness compared to other techniques such as prescribed performance control, which allows to constrain both the rate of convergence and the maximum overshoot on the trajectory tracking error of uncertain systems.  相似文献   

12.
In this paper, we investigate the problem of output feedback tracking for a class of Euler–Lagrange multi-agent systems with unmeasurable velocity and input disturbances. By proposing a novel dynamic velocity observer, an adaptive output feedback consensus algorithm is proposed such that the tracking errors of all agents can converge to an arbitrarily small neighborhood of zero by tuning the design parameters. A numerical example is presented to illustrate the effectiveness of the controller.  相似文献   

13.
This paper proposes a novel data-driven control for stabilization of a class of uncertain discrete-time nonlinear systems. The proposed method is based on the compact form dynamic linearization technique, which relates the first variation of the output signal with the fractional-order variation of the input one. Then, a discrete-time controller is proposed, based on the obtained fractional-order data-driven equivalent model. In order to compute the proposed controller and estimator, only input-output data information is considered. The uniform ultimately boundedness of the tracking errors are demonstrated by a formal analysis. Finally, comparison results based on simulations are presented to highlight the effectiveness of the proposed methodology.  相似文献   

14.
For a class of large-scale nonlinear time-delay systems with uncertain output equations, the problem of global state asymptotic regulation is addressed by output feedback. The class of systems under consideration are subject to feedforward growth conditions with unknown growth rate and time delays in inputs and outputs. To deal with the system uncertainties and the unknown delays, a novel low-gain observer with adaptive gain is firstly proposed; next, an adaptive output feedback delay-free controller is constructed by combining Lyapunov-Krasovskii functional with backstepping algorithm. Compared with the existing results, the controllers proposed are capable of handling both the uncertain output functions and the unknown time delays in inputs and outputs. With the help of dynamic scaling technique, it is shown that the closed-loop states converge asymptotically to zero, while the adaptive gain is bounded globally. Finally, the effectiveness of our control schemes are illustrated by three examples.  相似文献   

15.
Unmanned surface vehicles (USVs) are a promising marine robotic platform for numerous potential applications in ocean space due to their small size, low cost, and high autonomy. Modelling and control of USVs is a challenging task due to their intrinsic nonlinearities, strong couplings, high uncertainty, under-actuation, and multiple constraints. Well designed motion controllers may not be effective when exposed in the complex and dynamic sea environment. The paper presents a fully data-driven learning-based motion control method for an USV based on model-based deep reinforcement learning. Specifically, we first train a data-driven prediction model based on a deep network for the USV by using recorded input and output data. Based on the learned prediction model, model predictive motion controllers are presented for achieving trajectory tracking and path following tasks. It is shown that after learning with random data collected from the USV, the proposed data-driven motion controller is able to follow trajectories or parameterized paths accurately with excellent sample efficiency. Simulation results are given to illustrate the proposed deep reinforcement learning scheme for fully data-driven motion control without any a priori model information of the USV.  相似文献   

16.
This paper considers the distributed tracking control problem for linear multi-agent systems with disturbances and a leader whose control input is nonzero and not available to any follower. Based on the relative output measurements of neighboring agents, a novel distributed observer-based tracking protocol is proposed, where the distributed intermediate estimators are constructed to estimate the leader’s unknown control input and the states of the tracking error system simultaneously, then a distributed tracking protocol is designed based on the derived estimates. It is proved that the states of the tracking error system are uniformly ultimately bounded and an explicit tracking error bound is obtained. A simulation example of aircrafts verifies the effectiveness of the proposed method.  相似文献   

17.
This paper studies the fault-tolerant model-free adaptive control (FT-MFAC) problem for a class of single-input single-output (SISO) nonlinear networked control systems (NCSs) under denial-of-service (DoS) attacks. A novel FT-MFAC framework is established with the consideration of DoS attacks and the sensor fault, in which DoS attacks obeying the Bernoulli distribution randomly happen in the sensor-to-controller channel and the sensor fault is approximated by the radial basis function neural network (RBFNN). Based on the proposed framework, an FT-MFAC algorithm that uses only input/output data is proposed to guarantee that the output tracking error is bounded in the sense of mean square. Finally, the effectiveness of the proposed algorithm is illustrated by a simulation.  相似文献   

18.
In precision motion systems, well-designed feedforward control can effectively compensate for the reference-induced error. This paper aims to develop a novel data-driven iterative feedforward control approach for precision motion systems that execute varying reference tasks. The feedforward controller is parameterized with the rational basis functions, and the optimal parameters are sought to be solved through minimizing the tracking error. The key difficulty associated with the rational parametrization lies in the non-convexity of the parameter optimization problem. Hence, a new iterative parameter optimization algorithm is proposed such that the controller parameters can be optimally solved based on measured data only in each task irrespective of reference variations. Two simulation cases are presented to illustrate the enhanced performance of the proposed approach for varying tasks compared to pre-existing results.  相似文献   

19.
The consensus tacking problem for multi-agent systems with a leader of none control input and unknown control input is studied in this paper. By virtue of the relative state information of neighboring agents, state estimator and disturbance estimator are designed for each follower to estimate the system states and exogenous disturbance, respectively. Meanwhile, a novel control protocol based on two estimators is designed to make tracking error eventually converge to zero. Furthermore, the obtained results are further extended to the leader with unknown control input. A novel state estimator with adaptive time-varying gain is proposed such that consensus tracking condition is independent of the Laplacian matrix with regard to the communication topology. Finally, two examples are presented to verify the feasibility of the proposed control protocol.  相似文献   

20.
In this paper, the event-triggered decentralized control problem for interconnected nonlinear systems with input quantization is investigated. A state observer is constructed to estimate the unmeasurable states, and the state-dependent interconnections are accommodated by presenting some smooth functions. Then by employing backstepping technique and neural networks (NNs) approximation capability, a novel decentralized output feedback control strategy and an event-triggered mechanism are designed simultaneously. It is proved through Lyapunov theory that the closed-loop system is stable and the tracking property of all subsystems is guaranteed. Finally, the effectiveness of the proposed scheme is illustrated by an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号