首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers'' skills in inquiry-based science instruction. Here, we describe some of the program''s successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children''s science learning abilities to express more mature, positive views.  相似文献   

2.
This biography of the physicist and science educator Frank Oppenheimer uses his crowning achievement, San Francisco''s Exploratorium, as the lens through which to explore his life and work.This book is a timely read, coinciding as it does with the moving of the renowned Exploratorium from the Palace of Fine Arts at the foot of the Golden Gate Bridge in San Francisco, where it was established in 1969, to its new and larger location at Pier 15 on the Embarcadero. This institution continues to embody the vision of its founder, Frank Oppenheimer, the subject of this highly personal yet well-documented biography. The author, K. C. Cole, worked with Oppenheimer at the Exploratorium from 1972 until 1985 and in a subsequent voluminous correspondence. Together, they wrote magazine articles, prepared exhibit labels, developed applications for funding, and worked on a book project. The author herself is an ideal narrator, representing the target audience for the Exploratorium itself: the intelligent, curious, nonscientist. She brings the reader along on her voyage of discovery of the process of science through interactions with her enthusiastic and thoughtful guide.The book''s title, Something Incredibly Wonderful Happens, is drawn from a piece called “Adult Play,” which Oppenheimer wrote for the Exploratorium magazine in 1980 (Oppenheimer, 1980) . He describes play as activity without a particular goal, just noticing how something works or does not, combining things on a whim and often ending up with nothing in particular, throwing it out, and playing in a different way. “But a research physicist gets paid for this ‘waste of time’ and so do the people who develop exhibits in the Exploratorium. Occasionally though, something incredibly wonderful happens.” As the embodiment of the ease and freedom of play using exhibits designed to stimulate curiosity and challenge perception, the Exploratorium is precisely the sort of place where such exciting revelations can occur. The originality of the Exploratorium concept, a science museum without rules, encouraging experimentation and hands-on interaction with the exhibits, an environment where it is impossible to fail, grew organically from Oppenheimer''s own experiences of science and science teaching and was further informed by his rich background in art and music and his commitment to democracy in access to the riches of the intellectual life. The book thus provides a model for current life sciences educators, a particular view of the style of instruction that is now widely understood to be the most effective way to engage students in the processes of science. In this review, I will focus on those aspects of Oppenheimer''s life that most directly led to his approach to informal science education.The first six chapters describe Oppenheimer''s childhood, education, early work as an atomic physicist (including the Manhattan Project, which he worked on with his brother, Robert Oppenheimer), his difficulties during the McCarthy era, and a period of more than a decade in Pagosa Spring, Colorado, where he became a self-taught rancher and science teacher at the local high school. Blacklisted from university employment, he turned to the local community, who welcomed him and shared with him their agricultural expertise while valuing his contributions to the education of their children. A typical event was recalled by his son Michael, in which he and his father dissected a pig''s head after the pig had been slaughtered (p. 110). His teaching portfolio included general science, biology, chemistry, and physics. The students were not eager to learn at first, so Oppenheimer came up with intriguing experiments to capture their attention. They took apart machinery, dissected various organisms, explored the rural area and the junkyard, and asked questions. Sports were the preoccupation of most students, but they could involve relatively few students directly, and the emphasis on wins and losses took away much of the fun. Science fairs became a more democratic activity, and the students were unusually successful, bringing notice to Pagosa Springs and further opportunities for its students. In all his dealings with students, Oppenheimer took pains to answer their questions with honesty and rigor while adjusting his approaches to their intellectual maturity. He was not limited by age-appropriate curricula or preconceptions as to what a young teenager could understand. He also began working with teachers to help them develop similarly engaging curricula, a new concept for many of them, for whom science teaching was a threatening challenge. Oppenheimer understood that only excited and engaged teachers could adequately excite their students.At the end of his time in Colorado, he worked at the University of Colorado, where he undertook a revision of the physics teaching laboratories. In doing so, he developed and improvised instruments to conduct experiments on a wide range of physical phenomena. In this period, he became convinced that grades, particularly the grade of “F,” were pernicious and inhibited full creativity and curiosity in students, particularly those whose background was not that of the traditional academic culture. He worked hard to include opportunities for minority students in his courses and noticed how somewhat arbitrary “rules” tended to perpetuate the division between those who were “in” and those who were “out.” He also recognized the role of the physical setting in fostering excitement about science; he insisted on open laboratories surrounding lecture space, so the artificial distinction between the two modes of learning was blurred, and cooperation and conversation could be part of learning. The experiments became a sort of “library,” accessible all day long with the same freedom as a library of books.The first half of the book ends with Oppenheimer''s visits to science museums in Europe as a Guggenheim Fellow in 1965. He realized that the context of the science museum, particularly as a means to reach underserved members of the public, would be the best venue for his educational ideas. In the second half of the book, we learn of the development of the Exploratorium itself, designed in every aspect to encourage visitors to play and to be comfortable in their enjoyment of the exhibits, and to help them satisfy their curiosity. Analogous to a walk in the woods during which you notice various aspects of the environment, some large, some small, and take delight in them, the Exploratorium provided a “woods” of natural phenomena, through which visitors could walk, dallying here or there to try out one or another of the exhibits. Though all principles of science were important, an emphasis was placed on those involving direct perception. Aesthetics were important in all the exhibits, and artists were invited to prepare works and installations placed side by side with more traditionally “scientific” exhibits, thus blurring that somewhat artificial distinction. In fact, Oppenheimer was a proficient flautist and grew up in a home rich in art. He, more than most, was acutely aware of the beauty of science and the rigor of art, both ways of probing the human spirit. He is quoted as saying that artists and scientists are the official “noticers” of society (p. 191), an intriguing idea.A particularly innovative aspect of the Exploratorium was the hiring of students to be Explainers. Not as stuffy or formal as a typical docent, the Explainer''s job was to help others use the exhibits, perhaps suggesting ways the apparatus could be manipulated or what important principles it demonstrated. We now call this practice “peer-assisted learning,” and recent work has documented its advantages to both the explainer and the explainee.Another firmly held principle, at least during Oppenheimer''s life, was that admission to the Exploratorium should be free of charge. Despite a perennial shortage of funds, this principle was adhered to, guaranteeing that people could drop in from time to time as they might visit a favorite park, for a brief refreshing break or for a longer jaunt. Not only did such practice encourage regular visits, it democratized the institution by removing barriers to participation by those otherwise lacking means.Ultimately, Oppenheimer''s attitude toward science teaching and learning, as embodied in the Exploratorium, was to address two fundamental human needs: curiosity and confidence in one''s ability to understand things. It is a teacher''s job to get a student “unstuck” (p. 220), to intrigue the student and then to discover what the student already understands and build on it. Throughout, the teacher must reassure students that their brains are working just fine. No one ever fails a science museum.A final remark for readers of this journal is Oppenheimer''s attitude toward assessment. He said, “Why do we insist that there must always be a measure for the quality of learning? … By thus insisting we have limited our teaching to only those aspects of learning for which we have devised a ready measure. … If we prematurely insist on a quantitative measure for the effectiveness of museums, we will have to abandon the possibility of making them important” (p. 274). The criterion for evaluation of the exhibits at the Exploratorium was that they not be boring!In each of the 12 chapters of this book, subheadings are accompanied by pithy quotations from Oppenheimer himself or one of his colleagues. The scholarly apparatus of the book is contained in notes and a bibliography at the end, so it does not distract from a highly entertaining and edifying read. I recommend this book.  相似文献   

3.
This feature is designed to point CBE—Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research.This feature is designed to point CBE—Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as “Abstract available,” full text may be accessible at the indicated URL for readers whose institutions subscribe to the corresponding journal.1. Bush SD, Pelaez NJ, Rudd JA, Stevens MT, Tanner KD, Williams KS (2013). Widespread distribution and unexpected variation among science faculty with education specialties (SFES) across the United States. Proc Natl Acad Sci USA 110, 7170–7175.[Available at: www.pnas.org/content/110/18/7170.full.pdf+html?sid=f2823860-1fef-422c-b861-adfe8d82cef5]College and university basic science departments are taking an increasingly active role in innovating and improving science education and are hiring science faculty with education specialties (SFES) to reflect this emphasis. This paper describes a nationwide survey of these faculty at private and public degree-granting institutions. The authors assert that this is the first such analysis undertaken, despite the apparent importance of SFES at many, if not most, higher education institutions. It expands on earlier work summarizing survey results from SFES used in the California state university system (Bush et al., 2011 ).The methods incorporated a nationwide outreach that invited self-identified SFES to complete an anonymous, online survey. SFES are described as those “specifically hired in science departments to specialize in science education beyond typical faculty teaching duties” or “who have transitioned after their initial hire to a role as a faculty member focused on issues in science education beyond typical faculty teaching duties.” Two hundred eighty-nine individuals representing all major types of institutions of higher education completed the 95-question, face-validated instrument. Slightly more than half were female (52.9%), and 95.5% were white. There is extensive supporting information, including the survey instrument, appended to the article.Key findings are multiple. First, but not surprisingly, SFES are a national, widespread, and growing phenomenon. About half were hired since the year 2000 (the survey was completed in 2011). Interestingly, although 72.7% were in tenured or tenure-track positions, most did not have tenure before adopting SFES roles, suggesting that such roles are not, by themselves, an impediment to achieving tenure. A second key finding was that SFES differed significantly more between institutional types than between science disciplines. For example, SFES respondents at PhD-granting institutions were less likely to occupy tenure-track positions than those at MS-granting institutions and primarily undergraduate institutions (PUIs). Also, SFES at PhD institutions reported spending more time on teaching and less on research than their non-SFES peers. This may be influenced, of course, by the probability that fewer faculty at MS and PUI institutions have research as a core responsibility. The pattern is complex, however, because all SFES at all types of institutions listed teaching, service, and research as professional activities. SFES did report that they were much more heavily engaged in service activities than their non-SFES peers across all three types of institutions. A significantly higher proportion of SFES respondents at MS-granting institutions had formal science education training (60.9%), as compared with those at PhD-granting institutions (39.3%) or PUIs (34.8%).A third finding dealt with success of SFES in obtaining funding for science education research, with funding success defined as cumulatively obtaining $100,000 or more in their current positions. Interestingly, the factors that most strongly correlated statistically with funding success were 1) occupying a tenure-track position, 2) employment at a PhD-granting institution, and 3) having also obtained funding for basic science research. Not correlated were disciplinary field and, surprisingly, formal science education training.Noting that MS-granting institutions show the highest proportions of SFES who are tenured or tenure-track, who are higher ranked, who are trained in science education, and who have professional expectations aligned with those of their non-SFES peers, the authors suggest that these institutions are in the vanguard of developing science education as an independent discipline, similar to ecology or organic chemistry. They also point out that SFES at PhD institutions appear to be a different subset, occupying primarily non–tenure track, teaching positions. To the extent that more science education research funding is being awarded to these latter SFES, who occupy less enfranchised roles within their departments, the authors suggest the possibility that such funding may not substantially improve science education at these institutions. However, the authors make it clear that the implications of their findings merit more careful examination and discussion.2. Opfer JE, Nehm RH, Ha M (2012). Cognitive foundations for science assessment design: knowing what students know about evolution. J Res Sci Teach 49, 744–777.[Abstract available: http://onlinelibrary.wiley.com/doi/10.1002/tea.21028/abstract]The authors previously published an article (Nehm et al., 2012) documenting a new instrument (more specifically, a short-answer diagnostic test), Assessing Contextual Reasoning about Natural Selection (ACORNS). This article describes how cognitive principles were used in designing the theoretical framework of ACORNS. In particular, the authors attempted to follow up on the premise of a National Research Council (2001) report on educational assessment that use of research-based, cognitive models for student learning could improve the design of items used to measure students’ conceptual understandings.In applying this recommendation to design of the ACORNS, the authors were guided by four principles for assessing the progression from novice to expert in using core concepts of natural selection to explain and discuss the process of evolutionary change. The items in ACORNS are designed to assess whether, in moving toward expertise, individuals 1) use core concepts for facilitation of long-term recall; 2) continue to hold naïve ideas coexistent with more scientifically normative ones; 3) offer explanations centered around mechanistic rather than teleological causes; and 4) can use generalizations (abstract knowledge) to guide reasoning, rather than focusing on specifics or less-relevant surface features. Thus, these items prioritize recall over recognition, detect students’ use of causal features of natural selection, test for coexistence of normative and naïve conceptions, and assess students’ focus on surface features when offering explanations.The paper provides an illustrative set of four sample items, each of which describes an evolutionary change scenario with different surface features (familiar vs. unfamiliar taxa; plants vs. animals) and then prompts respondents to write explanations for how the change occurred. To evaluate the ability of items to detect gradations in expertise, the authors enlisted the participation of 320 students enrolled in an introductory biology sequence. Students’ written explanations for each of the four items were independently coded by two expert scorers for presence of core concepts and cognitive biases (deviations from scientifically normative ideas and causal reasoning). Indices were calculated to determine the frequency, diversity, and coherence of students’ concept usage. The authors also compared the students’ grades in a subsequent evolutionary biology course to determine whether the use of core concepts and cognitive biases in their ACORNS explanations could successfully predict future performance.Evidence from these qualitative and quantitative data analyses argued that the items were consistent with the cognitive model and four guiding principles used in their design, and that the assessment could successfully predict students’ level of academic achievement in subsequent study of evolutionary biology. The authors conclude by offering examples of student explanations to highlight the utility of this cognitive model for designing assessment items that document students’ progress toward expertise.3. Sampson V, Enderle P, Grooms J (2013). Development and initial validation of the Beliefs about Reformed Science Teaching and Learning (BARSTL) questionnaire. School Sci Math 113, 3–15.[Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1949-8594.2013.00175.x/full]The authors report on the development of a Beliefs about Reformed Science Teaching and Learning (BARSTL) instrument (questionnaire), designed to map teachers’ beliefs along a continuum from traditional to reform-minded. The authors define reformed views of science teaching and learning as being those that are consistent with constructivist philosophies. That is, as quoted from Driver et al. (1994 , p. 5), views that stem from the basic assumption that “knowledge is not transmitted directly from one knower to another, but is actively built up by the learner” by adjusting current understandings (and associated rules and mental models) to accommodate and make sense of new information and experiences.The basic premise for the instrument development posed by the authors is that teachers’ beliefs about the nature of science and of the teaching and learning of science serve as a filter for, and thus strongly influence how they enact, reform-based curricula in their classrooms. They cite a study from a high school physics setting (Feldman, 2002 ) to illustrate the impact that teachers’ differing beliefs can have on the ways in which they incorporate the same reform-based curriculum into their courses. They contend that, because educational reform efforts “privilege” constructivist views of teaching and learning, the BARSTL instrument could inform design of teacher education and professional development by monitoring the extent to which the experiences they offer are effective in shifting teachers’ beliefs toward the more constructivist end of the continuum.The BARTSL questionnaire described in the article has four subscales, with eight items per subscale. The four subscales are: a) how people learn about science; b) lesson design and implementation; c) characteristics of teachers and the learning environment; and d) the nature of the science curriculum. In each subscale, four of the items were designed to be aligned with reformed perspectives on science teaching and learning, and four to have a traditional perspective. Respondents indicate the extent to which they agree with the item statements on a 4-point Likert scale. In scoring the responses, strong agreement with a reform-based item is assigned a score of 4 and strong disagreement a score of 1; scores for traditional items were assigned on a reverse scale (e.g., 1 for strong agreement). A more extensive characterization of the subscales is provided in the article, along with all of the instrument items (see Appendix).The article describes the seven-step process and associated analyses used to, in the words of the authors, “assess the degree to which the BARTSL instrument has accurately translated the construct, reformed beliefs about science teaching, into an operationalization.” The steps include: 1) defining the specific constructs (concepts that can be used to explain related phenomena) that the instrument would measure; 2) developing instrument items; 3) evaluating items for clarity and comprehensibility; 4) evaluating construct and content validity of the items and subscales; 5) a first round of evaluation of the instrument; 6) item and instrument revision; and 7) a second evaluation of validity and reliability (the extent to which the instrument yields the same results on repetition). Step 3 was accomplished by science education doctoral students who reviewed the items and provided feedback, and step 4 with assistance from a seven-person panel composed of science education faculty and doctoral students. Administration of the instrument to 104 elementary teacher education majors (ETEs) enrolled in a teaching method course was used to evaluate the first draft of the instrument and identify items for inclusion in the final instrument. The instrument was administered to a separate population of 146 ETEs in step 7.The authors used two estimates of internal consistency, a Spearman-Brown corrected correlation and coefficient alpha, to assess the reliability of the instrument; the resulting values were 0.80 and 0.77, respectively, interpreted as being indicative of satisfactory internal consistency. Content validity, defined by the authors as the degree to which the sample of items measures what the instrument was designed to measure, was assessed by a panel of experts who reviewed the items within each of the four subscales. The experts concluded that items that were designed to be consistent with reformed and traditional perspectives were in fact consistent and were evenly distributed throughout the instrument. To evaluate construct validity (which was defined as the instrument''s “theoretical integrity”), the authors performed a correlation analysis on the four subscales to examine the extent to which each could predict the final overall score on the instrument and thus be viewed as a single construct of reformed beliefs. They found that each of the subscales was a good predictor of overall score. Finally, they performed an exploratory factor analysis and additional follow-up analyses to determine whether the four subscales measure four dimensions of reformed beliefs and to ensure that items were appropriately distributed among the subscales. In general, the authors contend that the results of these analyses indicated good content and construct validity.The authors conclude by pointing out that BARTSL scores could be used for quantitative comparisons of teachers’ beliefs and stances about reform-minded science teaching and learning and for following changes over time. However, they recommend BARTSL scores not be used to infer a given level of reform-mindedness and are best used in combination with other data-collection techniques, such as observations and interviews.4. Meredith DC, Bolker JA (2012). Rounding off the cow: challenges and successes in an interdisciplinary physics course for life sciences students. Am J Phys 80, 913–922.[Abstract available at: http://ajp.aapt.org/resource/1/ajpias/v80/i10/p913_s1?isAuthorized=no]There is a well-recognized need to rethink and reform the way physics is taught to students in the life sciences, to evaluate those efforts, and to communicate the results to the education community. This paper describes a multiyear effort at the University of New Hampshire by faculties in physics and biological sciences to transform an introductory physics course populated mainly by biology students into an explicitly interdisciplinary course designed to meet students’ needs.The context was that of a large-enrollment (250–320 students), two-semester Introductory Physics for Life Science Students (IPLS) course; students attend one of two lecture sections that meet three times per week and one laboratory session per week. The IPLS course was developed and cotaught by the authors, with a goal of having “students understand how and why physics is important to biology at levels from ecology and evolution through organismal form and function, to instrumentation.” The selection of topics was drastically modified from that of a traditional physics course, with some time-honored topics omitted or de-emphasized (e.g., projectile motion, relativity), and others thought to be more relevant to biology introduced or emphasized (e.g., fluids, dynamics). In addition, several themes not always emphasized in a traditional physics course but important in understanding life processes were woven through the IPLS course: scaling, estimation, and gradient-driven flows.It is well recognized that life sciences students need to strengthen their quantitative reasoning skills. To address their students’ needs in this area, the instructors ensured that online tutorials were available to students, mathematical proofs that the students are not expected use were de-emphasized, and Modeling Instruction labs were incorporated that require students to model their own data with an equation and compose a verbal link between their equations and the physical world.Student learning outcomes were assessed through the use of the Colorado Learning Attitudes about Science Survey (CLASS), which measures students’ personal epistemologies of science by their responses on a Likert-scale survey. These data were supplemented by locally developed, open-ended surveys and Likert-scale surveys to gauge students’ appreciation for the role of physics in biology. Students’ conceptual understanding was evaluated using the Force and Motion Concept Evaluation (FCME) and Test of Understanding Graphs in Kinematics (TUG-K), as well as locally developed, open-ended physics problems that probed students’ understanding in the context of biology-relevant applications and whether their understanding of physics was evident in their use of mathematics.The results broadly supported the efficacy of the authors’ approaches in many respects. More than 80% of the students very strongly or strongly agreed with the statement “I found the biological applications interesting,” and almost 60% of the students very strongly or strongly agreed with the statements “I found the biological applications relevant to my other courses and/or my planned career” and “I found the biological applications helped me understand the physics.” Students were also broadly able to integrate physics into their understanding of living systems. Examples of questions that students addressed include one that asked students to evaluate the forces on animals living in water versus those on land. Ninety-one percent of the students were able to describe at least one key difference between motion in air and water. Gains in the TUG-K score averaged 33.5% across the 4 yr of the course offering and were consistent across items. However, the positive attitudes about biology applications in physics were not associated with gains in areas of conceptual understanding measured by the FCME instrument. These gains were more mixed than those from the TUG-K and dependent on the concept being evaluated, with values as low as 15% for some concepts and an average gain on all items of 24%. Overall, the gains on the two instruments designed to measure physics understanding were described by the authors as being “modest at best,” particularly in the case of the FCME, given that reported national averages for reformed courses for this instrument range from 33 to 93%.The authors summarize by identifying considerations they think are essential to design and implementation of a IPLS-like course: 1) the need to streamline the coverage of course topics to emphasize those that are truly aligned with the needs of life sciences majors; 2) the importance of drawing from the research literature for evidence-based strategies to motivate students and aid in their development of problem-solving skills; 3) taking the time to foster collaborations with biologists who will reinforce the physics principles in their teaching of biology courses; and 4) considering the potential constraints and limitations to teaching across disciplinary boundaries and beginning to strategize ways around them and build models for sustainability. The irony of this last recommendation is that the authors report having suspended the teaching of IPLS at their institution due to resource constraints. They recommend that institutions claiming to value interdisciplinary collaboration need to find innovative ways to reward and acknowledge such collaborations, because “external calls for change resonate with our own conviction that we can do better than the traditional introductory course to help life science students learn and appreciate physics.”I invite readers to suggest current themes or articles of interest in life science education, as well as influential papers published in the more distant past or in the broader field of education research, to be featured in Current Insights. Please send any suggestions to Deborah Allen (ude.ledu@nellaed).  相似文献   

4.
At the close of the Society for the Advancement of Biology Education Research conference in July 2012, one of the organizers made the comment: “Misconceptions are so yesterday.” Within the community of learning sciences, misconceptions are yesterday''s news, because the term has been aligned with eradication and/or replacement of conceptions, and our knowledge about how people learn has progressed past this idea. This essay provides an overview of the discussion within the learning sciences community surrounding the term “misconceptions” and how the education community''s thinking has evolved with respect to students’ conceptions. Using examples of students’ incorrect ideas about evolution and ecology, we show that students’ naïve ideas can provide the resources from which to build scientific understanding. We conclude by advocating that biology education researchers use one or more appropriate alternatives in place of the term misconception whenever possible.  相似文献   

5.
Instructors attempting new teaching methods may have concerns that students will resist nontraditional teaching methods. The authors provide an overview of research characterizing the nature of student resistance and exploring its origins. Additionally, they provide potential strategies for avoiding or addressing resistance and pose questions about resistance that may be ripe for research study.
“What if the students revolt?” “What if I ask them to talk to a neighbor, and they simply refuse?” “What if they do not see active learning as teaching?” “What if they just want me to lecture?” “What if my teaching evaluation scores plummet?” “Even if I am excited about innovative teaching and learning, what if I encounter student resistance?”
These are genuine concerns of committed and thoughtful instructors who aspire to respond to the repeated national calls to fundamentally change the way biology is taught in colleges and universities across the United States. No doubt most individuals involved in promoting innovative teaching in undergraduate biology education have heard these or variations on these fears and concerns. While some biology instructors may be at a point where they are still skeptical of innovative teaching from more theoretical perspectives (“Is it really any better than lecturing?”), the concerns expressed by the individuals above come from a deeply committed and practical place. These are instructors who have already passed the point where they have become dissatisfied with traditional teaching methods. They have already internally decided to try new approaches and have perhaps been learning new teaching techniques themselves. They are on the precipice of actually implementing formerly theoretical ideas in the real, messy space that is a classroom, with dozens, if not hundreds, of students watching them. Potential rejection by students as they are practicing these new pedagogical skills represents a real and significant roadblock. A change may be even more difficult for those earning high marks from their students for their lectures. If we were to think about a learning progression for faculty moving toward requiring more active class participation on the part of students, the voices above are from those individuals who are progressing along this continuum and who could easily become stuck or turn back in the face of student resistance.Unfortunately, it appears that little systematic attention or research effort has been focused on understanding the origins of student resistance in biology classrooms or the options for preventing and addressing such resistance. As always, this Feature aims to gather research evidence from a variety of fields to support innovations in undergraduate biology education. Below, we attempt to provide an overview of the types of student resistance one might encounter in a classroom, as well as share hypotheses from other disciplines about the potential origins of student resistance. In addition, we offer examples of classroom strategies that have been proposed as potentially useful for either preventing student resistance from happening altogether or addressing student resistance after it occurs, some of which align well with findings from research on the origins of student resistance. Finally, we explore how ready the field of student resistance may be for research study, particularly in undergraduate biology education.  相似文献   

6.
7.
This essay describes how in the 1890s the Committee of Ten arrived at their recommendations about the organization of the high school biological sciences and seeks to correct the frequently held, but erroneous view that the Committee of Ten was the initiator of the Biology-Chemistry-Physics order of teaching sciences prevalent in high schools today. The essay details the factors underlying the changing views of high school biology from its “natural history” origins, through its “zoology, botany, physiology” disciplinary phase to its eventual integration into a “general biology” course. The simultaneous parallel development of the “Carnegie Unit” for measuring coursework is highlighted as a significant contributor in the evolution of the present day high school biology course. The essay concludes with a discussion of the implications of the grade placement of the sciences for the future development of high school biology.  相似文献   

8.
Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for “nonmajors,” GE courses appear derived directly from their publisher''s majors text. Topic scope and sequence of GE texts reflect those of “their” majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools’ GE curricula.  相似文献   

9.
The scale and importance of Vision and Change in Undergraduate Biology Education: A Call to Action challenges us to ask fundamental questions about widespread transformation of college biology instruction. I propose that we have clarified the “vision” but lack research-based models and evidence needed to guide the “change.” To support this claim, I focus on several key topics, including evidence about effective use of active-teaching pedagogy by typical faculty and whether certain programs improve students’ understanding of the Vision and Change core concepts. Program evaluation is especially problematic. While current education research and theory should inform evaluation, several prominent biology faculty–development programs continue to rely on self-reporting by faculty and students. Science, technology, engineering, and mathematics (STEM) faculty-development overviews can guide program design. Such studies highlight viewing faculty members as collaborators, embedding rewards faculty value, and characteristics of effective faculty-development learning communities. A recent National Research Council report on discipline-based STEM education research emphasizes the need for long-term faculty development and deep conceptual change in teaching and learning as the basis for genuine transformation of college instruction. Despite the progress evident in Vision and Change, forward momentum will likely be limited, because we lack evidence-based, reliable models for actually realizing the desired “change.”
All members of the biology academic community should be committed to creating, using, assessing, and disseminating effective practices in teaching and learning and in building a true community of scholars. (American Association for the Advancement of Science [AAAS], 2011 , p. 49)
Realizing the “vision” in Vision and Change in Undergraduate Biology Education (Vision and Change; AAAS, 2011 ) is an enormous undertaking for the biology education community, and the scale and critical importance of this challenge prompts us to ask fundamental questions about widespread transformation of college biology teaching and learning. For example, Vision and Change reflects the consensus that active teaching enhances the learning of biology. However, what is known about widespread application of effective active-teaching pedagogy and how it may differ across institutional and classroom settings or with the depth of pedagogical understanding a biology faculty member may have? More broadly, what is the research base concerning higher education biology faculty–development programs, especially designs that lead to real change in classroom teaching? Has the develop-and-disseminate approach favored by the National Science Foundation''s (NSF) Division of Undergraduate Education (Dancy and Henderson, 2007 ) been generally effective? Can we directly apply outcomes from faculty-development programs in other science, technology, engineering, and mathematics (STEM) disciplines or is teaching college biology unique in important ways? In other words, if we intend to use Vision and Change as the basis for widespread transformation of biology instruction, is there a good deal of scholarly literature about how to help faculty make the endorsed changes or is this research base lacking?In the context of Vision and Change, in this essay I focus on a few key topics relevant to broad-scale faculty development, highlighting the extent and quality of the research base for it. My intention is to reveal numerous issues that may well inhibit forward momentum toward real transformation of college-level biology teaching and learning. Some are quite fundamental, such as ongoing dependence on less reliable assessment approaches for professional-development programs and mixed success of active-learning pedagogy by broad populations of biology faculty. I also offer specific suggestions to improve and build on identified issues.At the center of my inquiry is the faculty member. Following the definition used by the Professional and Organizational Development Network in Higher Education (www.podnetwork.org), I use “faculty development” to indicate programs that emphasize the individual faculty member as teacher (e.g., his or her skill in the classroom), scholar/professional (publishing, college/university service), and person (time constraints, self-confidence). Of course, faculty members work within particular departments and institutions, and these environments are clearly critical as well (Stark et al., 2002 ). Consequently, in addition to focusing on the individual, faculty-development programs may also consider organizational structure (such as administrators and criteria for reappointment and tenure) and instructional development (the overall curriculum, who teaches particular courses). In fact, Diamond (2002) emphasizes that the three areas of effort (individual, organizational, instructional) should complement one another in faculty-development programs. The scope of the numerous factors impacting higher education biology instruction is a realistic reminder about the complexity and challenge of the second half of the Vision and Change endeavor.This essay is organized around specific topics meant to be representative and to illustrate the state of the art of widespread (beyond a limited number of courses and institutions) professional development for biology faculty. The first two sections focus on active teaching and biology students’ conceptual understanding, respectively. The third section concerns important elements that have been identified as critical for effective STEM faculty-development programs.  相似文献   

10.
In their 2012 report, the President''s Council of Advisors on Science and Technology advocated “replacing standard science laboratory courses with discovery-based research courses”—a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.  相似文献   

11.
12.
13.
The aim of this research was to explore the experiences of a group of first-time mothers who had given birth at home or in hospital in Australia. Data were generated from in-depth interviews with 19 women and analyzed using a grounded theory approach. One of the categories to emerge from the analysis, “Preparing for Birth,” is discussed in this article. Preparing for Birth consisted of two subcategories, “Finding a Childbirth Setting” and “Setting Up Birth Expectations,” which were mediated by beliefs, convenience, finances, reputation, imagination, education and knowledge, birth stories, and previous life experiences. Overall, the women who had planned home births felt more prepared for birth and were better supported by their midwives compared with women who had planned hospital births.  相似文献   

14.
15.
We developed a course, as part of our institution's core program, which provides students with a foundation in academic literacy in the social sciences: how to find, read, critically assess, and communicate about social science research. It is not a research methods course; rather, it is intended to introduce students to the social sciences and be better consumers of social science research. In this article, we describe the key learning objectives of this course, the basic content areas, and some of the innovative teaching and learning strategies used in the course. We also provide empirical evidence of the effectiveness of the course in meeting its learning objectives and of student responses to the course. Finally, we discuss some of the challenges in developing interdisciplinary core courses and offer suggestions for best practices for teaching social science literacy as part of the core curriculum.  相似文献   

16.
Antenatal education is a crucial component of antenatal care, yet practice and research demonstrate that women and men now seek far more than the traditional approach of a birth and parenting program attended in the final weeks of pregnancy. Indeed, women and men participating in this study recommended a range of strategies to be provided during the childbearing year, comparable to a “menu in a restaurant.” Their strategies included three program types: “Hearing Detail and Asking Questions,” “Learning and Discussing,” and “Sharing and Supporting Each Other.” The characteristics of each type of program are identified in this article. The actual learning methods the study participants recommended to be incorporated into the programs were “Time to Catch Up and Focus,” “Seeing and Hearing the Real Experience,” “Practicing,” and “Discovering.”  相似文献   

17.
This feature is designed to point CBE---Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research.This feature is designed to point CBE—Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as “Abstract available,” full text may be accessible at the indicated URL for readers whose institutions subscribe to the corresponding journal.
  • 1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP (2014). Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci USA 111, 8410–8415. [Abstract available at www.pnas.org/content/111/23/8410.abstract]
Online publication of this meta-analysis last spring no doubt launched a legion of local and national conversations about how science is best taught—as the authors state the essential issue, “Should we ask or should we tell?” To assess the relative effectiveness of active-learning (asking) versus lecture-based (telling) methods in college-level science, technology, engineering, and mathematics (STEM) classes, the authors scoured the published and unpublished literature for studies that performed a side-by-side comparison of the two general types of methods. Using five predetermined criteria for admission to the study (described fully in the materials and methods section), at least two independent coders examined each potentially eligible paper to winnow down the number of eligible studies from 642 to 225. The working definition of what constitutes active learning (used to determine potential eligibility) was obtained from distilling definitions written by 338 seminar attendees; what constitutes lecture was defined as “continuous exposition by the teacher” (quoted from Bligh, 2000 ). The eligible studies were situated in introductory and upper-division courses from a full range of enrollment sizes and multiple STEM disciplines and included majors and nonmajors as participants. The frequency of use and types of active-learning methodologies described in the 225 eligible studies varied widely.Quantitative analysis of the eligible studies focused on comparison of two outcome variables: 1) scores on identical or formally equivalent examinations and 2) failure rates (receipt of a “D” or “F” grade or withdrawal from the course). Major findings were that student performance on exams and other assessments (such as concept inventories) was nearly half an SD higher in active-learning versus lecture courses, with an effect size (standardized mean weighted difference) of 0.47. Analyses also revealed that average failure rates were 55% higher for students in the lecture courses than in courses with active learning. Heterogeneity analyses indicated that 1) there were no statistically significant differences in outcomes with respect to disciplines; 2) effect sizes were lower when instructor-generated exams were used versus concept inventories with both types of courses (perhaps because concept inventories tend to require more higher-order thinking skills); 3) effect sizes were not significantly different in nonmajors versus majors courses or in lower versus upper-division courses; and 4) although active learning had the greatest positive effect in smaller-enrollment courses, effect sizes were higher with active learning at all enrollment sizes. Two types of analyses, calculation of fail-safe numbers and funnel plots, supported a lack of publication bias (tendency to not publish studies with low effect sizes). Finally, the authors demonstrated that there were no statistically significant differences in effect sizes despite variation in the quality of the controls on instructor and student equivalence, supporting the important conclusion that the differences in effectiveness between the two methods were not instructor dependent.In one of the more compelling sections of this meta-analysis, the authors translated the relatively dry numbers resulting from statistical comparisons to potential impacts on the lives of the students taking STEM courses. For example, for the 29,300 students reported for the lecture treatments across all students, the average difference in failure rates (21.8% in active learning vs. 33.8% with lecture) suggests that 3516 fewer students would have failed if enrolled in an active-learning course. This and other implications for the more beneficial impact of active learning on STEM students led the authors to state, “If the experiments analyzed here had been conducted as randomized controlled trials of medical interventions, they may have been stopped for benefit.” That is, the control group condition would have been halted because of the clear, beneficial effects of the treatment. The authors conclude by suggesting additional important implications for future undergraduate STEM education research. It may no longer be justified to conduct more “first-generation” research comparing active-learning approaches with traditional lecture; rather, for greater impact on course design, second-generation researchers should focus on what types and intensities of exposure to active learning are most effective for different students, instructors, and topics.This provocative commentary by Carl Weiman highlights the major findings reported in the Proceedings of the National Academy of Sciences by Freeman et al. (2014) and underscores the implications. The graphical representations displaying the key data on effect sizes and failure rates presented in the Freeman et al. meta-analysis are redrawn in the commentary in a way that is likely to be more familiar to the typical reader, making the differences in outcomes for active learning versus lecture appear more striking. Weiman concludes by elaborating on the important implications of the meta-analysis for college-level STEM educators and administrators, suggesting that it “makes a powerful case that any college or university that is teaching its STEM courses by traditional lectures is providing an inferior education to its students. One hopes that it will inspire administrators to start paying attention to the teaching methods used in their classrooms … establishing accountability for using active-learning methods.”National societies, committee reports, and accrediting bodies recommend that engineering curricula be designed to prepare future engineers for the complex interdisciplinary nature of the field and for the multitude of skills and perspectives they will need to be successful practitioners. The authors posit that case-based instruction, with its emphasis on honing skills in solving authentic, interdisciplinary, and ill-defined problems, aligns well with these recommendations. However, the methodology is still relatively underutilized, and its effectiveness is underexamined. This article describes a study designed to advance these issues by comparing lecture- and case-based methods within the same offering of a 72-student, upper-level, required course in mechanical engineering.The study used a within-subjects, posttest only, A-B-A-B research design across four key course topics. That is, two lecture-based modules (the A or baseline phases) alternated with case-based modules (the B or treatment phases). Following each module, students responded to open-response quiz questions and a survey about learning and engagement (adapted from the Student Assessment of Learning Gains instrument). The quiz questions assessed ability to apply knowledge to problem solving (so-called “traditional” questions) and ability to explain the concepts that were used (“conceptual” questions). This study design had the advantage that the same students experienced both the baseline and treatment conditions twice. The authors describe in detail the pedagogical approaches used in both sets of the A and B phases.The quizzes were scored by independent raters (with high interrater reliability) on a 0–3 scale; scores were analyzed using appropriate statistical methods. Survey items were analyzed using a principal-components factor analysis; composite scores were generated for a learning confidence factor and an engagement–connections factor. Analyses revealed that the two pedagogical approaches had similar outcomes with respect to the traditional questions, but conceptual understanding scores (indicating better understanding of the concepts that were applied to problem solving) were significantly higher for the case-based modules. Students reported that they appreciated how cases were better than lecture in helping them make connections to real-world concerns and see the relevance of what they were learning, but there were no significant differences in students’ perceptions of their learning gains in the case-based versus the lecture modules. The authors note that many studies have likewise demonstrated that students’ perceptions of their learning gains in more learner-centered courses are often not accurate reflections of the actual learning outcomes.The authors conclude that while these results are promising indications of the effectiveness of case-based instruction in engineering curricula, the studies need to be replicated across a number of semesters and in different engineering disciplines and extended to assess the long-term effect of case-based instruction on students’ ability to remember and apply their knowledge.Although this study was limited to an engineering context, the case-based methodologies and research design seem well-suited for use in action research in other disciplines.Well-documented challenges to conceptual change faced by students of evolution include the necessity of unseating existing naïve theories (such as natural selection having purposiveness), having the ability to view the complex and emergent nature of evolutionary processes through systems-type thinking, and being able to see the connections between evolutionary content learned in the classroom and everyday life events that can facilitate appreciation of its importance and motivate learning. To help students meet these challenges, the authors adapted a pedagogical model called Teaching for Transformative Experiences in Science (TTES) in the course of instruction on six major concepts in evolutionary biology. This article reports on a comparison of the effectiveness of TTES approaches in fostering conceptual change and positive affect with that of instruction enhanced with use of refutational texts (RT). Use of RTs to promote conceptual change, a strategy with documented effectiveness, entails first stating a misconception (the term used by the authors), then explicitly refuting it by elaborating on a scientific explanation. By contrast, the TTES model promotes teaching that fosters transformative learning experiences—teaching in which instructors 1) place the content in a context allows the students to see its utility or experiential value; 2) model their own transformative experiences in learning course concepts; and 3) scaffold a process that allows students to rethink or “resee” a concept from the perspective of their previous, related life experiences.The authors designed the study to address three questions relevant to the comparison of the two approaches: would the TTES group (vs. the RT group) demonstrate or report 1) greater conceptual change, 2) higher levels of transformative experience, and 3) differences in topic emotions (more positive affect) related to learning about evolution? The study used three survey instruments, one that measured the types and depth of students’ transformative experiences (the Transformative Experience Survey, adapted from Pugh et al., 2010 ), another that assessed conceptual knowledge (Evolutionary Reasoning Scale; Shulman, 2006 ), and a third that evaluated the emotional reactions of students to the evolution content they were learning (Evolution Emotions Survey, derived from Broughton et al., 2011 ). In addition to Likert-scale items, the Transformative Experience Survey contained three open-ended response questions; the responses were scored by two independent raters using a coding scheme for degree of out-of-school engagement. The authors provide additional detail about the nuances of what these instruments were designed to measure and their scoring schemes and include the instruments in the appendices. The Evolutionary Reasoning Scale and the Evolution Emotions survey were administered as both pre- and posttests, and the Transformative Experience survey was administered only at the end of the intervention. The treatment (TTES, n = 28) and comparison (RT, n = 27) groups were not significantly different with respect to all measured demographic variables and the number of high school or college-level science courses taken.Briefly, the evolutionary biology learning experience that participants were exposed to was 3 d in duration for both the treatment and comparison groups. On day 1, the instructor (the same person for both groups) gave a PowerPoint lecture on the same six evolutionary concepts, with illustrative examples. For the treatment group only, the instructor drew from his own transformative experiences in connection with the illustrative examples, describing how he used the concepts, what their value was to him, and how each had expanded his understanding and perception of evolution. On days 2 and 3 for the treatment group, the students and instructor engaged in whole-class discussions about their everyday experiences with evolution concepts (and related misconceptions) and their usefulness; the instructor scaffolded various “reseeing” experiences throughout the discussions. For the comparison group, misconceptions and refutations were addressed in the course of the day 1 lecture, and on days 2 and 3, the participants read refutational texts and then took part in discussions of the texts led by the instructor.Survey results and accompanying statistical analyses indicated that both groups exhibited gains (with significant t statistics) in understanding of the evolution concepts as measured by the Evolutionary Reasoning Scale (Shulman, 2006 ). However, the gains were greater for the treatment (TTES) group: effect size, reported as a value for eta-squared, η2, equaled 0.29. The authors point out by way of context for this outcome that use of RTs, along with follow-up discussions that contrast misconceptions with scientific explanations, has been previously shown to be effective in promoting conceptual change; thus, the comparison was with a well-regarded methodology. Additionally, the Transformation Experience survey findings indicated higher levels of transformative experience for the TTES group participants; they more extensively reported that the concepts had everyday value and meaning and expanded their perspectives. The TTES group alone showed pre- to posttest gains in enjoyment while learning about evolution, a positive emotion that may have classroom implications in terms of receptivity to learning about evolution and willingness to continue study in this and related fields.The authors conclude that the TTES model can effectively engage students in transformative experiences in ways that can facilitate conceptual change in content areas in which that change is difficult to achieve. In discussing possible limitations of the study, they note in particular that the predominance of female study participants (71% of the total) argues for its replication with a more diverse sample.I invite readers to suggest current themes or articles of interest in life sciences education, as well as influential papers published in the more distant past or in the broader field of education research, to be featured in Current Insights. Please send any suggestions to Deborah Allen (ude.ledu@nellaed).  相似文献   

18.
We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton''s laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.  相似文献   

19.
20.
With rapid advances in biotechnology and molecular biology, instructors are challenged to not only provide undergraduate students with hands-on experiences in these disciplines but also to engage them in the “real-world” scientific process. Two common topics covered in biotechnology or molecular biology courses are gene-cloning and bioinformatics, but to provide students with a continuous laboratory-based research experience in these techniques is difficult. To meet these challenges, we have partnered with Bio-Rad Laboratories in the development of the “Cloning and Sequencing Explorer Series,” which combines wet-lab experiences (e.g., DNA extraction, polymerase chain reaction, ligation, transformation, and restriction digestion) with bioinformatics analysis (e.g., evaluation of DNA sequence quality, sequence editing, Basic Local Alignment Search Tool searches, contig construction, intron identification, and six-frame translation) to produce a sequence publishable in the National Center for Biotechnology Information GenBank. This 6- to 8-wk project-based exercise focuses on a pivotal gene of glycolysis (glyceraldehyde-3-phosphate dehydrogenase), in which students isolate, sequence, and characterize the gene from a plant species or cultivar not yet published in GenBank. Student achievement was evaluated using pre-, mid-, and final-test assessments, as well as with a survey to assess student perceptions. Student confidence with basic laboratory techniques and knowledge of bioinformatics tools were significantly increased upon completion of this hands-on exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号